python中多線程的詳細介紹(程式碼範例)
這篇文章帶給大家的內容是關於python中多線程的詳細介紹(程式碼範例),有一定的參考價值,有需要的朋友可以參考一下,希望對你有幫助。
本文記錄學習Python遇到的問題和一些常用用法,註本開發環境的Python版本為2.7。
一、python檔案命名
在python檔案命名時,一定要注意不能和系統預設的模組名稱衝突,否則會報錯。
如下面的例子,在學習線程時,將文件名命名為threading.py
,Python腳本完全正常沒問題,結果報下面的錯誤:AttributeError: 'module' object有 no attribute 'xxx'
。
threading.py
# -*- coding:utf-8 -*- """ @author: Corwien @file: threading_test.py @time: 18/8/25 09:14 """ import threading # 获取已激活的线程数 print(threading.active_count())
執行:
➜ baseLearn python threading/threading.py Traceback (most recent call last): File "threading/threading.py", line 9, in <module> import threading File "/Users/kaiyiwang/Code/python/baseLearn/threading/threading.py", line 12, in <module> print(threading.active_count()) AttributeError: 'module' object has no attribute 'active_count' ➜ baseLearn
問題定位:
查看import
庫的來源文件,發現來源文件存在且沒有錯誤,同時存在來源文件的.pyc
文件
#問題解決:
1.命名py腳本時,不要與python預留字,模組名稱等相同
#2.刪除該庫的
.pyc
」檔案(因為py腳本每次執行時均會產生.pyc檔;在已經產生.pyc檔的情況下,若程式碼不更新,執行時間依舊會走pyc,所以要刪除.pyc檔),重新執行程式碼;或找一個可以執行程式碼的環境,拷貝取代目前機器的.pyc檔即可
將腳本檔名重新命名為threading_test.py
,然後執行,就不會報錯了。
➜ baseLearn python threading/threading_test.py 1 ➜ baseLearn
二、多執行緒threading
多執行緒是加速程式運算的有效方式,Python的多執行緒模組threading
上手快速簡單,從這節開始我們就教大家如何使用它。
1、新增執行緒
threading_test.py
# -*- coding:utf-8 -*- """ @author: Corwien @file: threading_test.py @time: 18/8/25 09:14 """ import threading # 获取已激活的线程数 # print(threading.active_count()) # 查看所有线程信息 # print(threading.enumerate()) # 查看现在正在运行的线程 # print(threading.current_thread()) def thread_job(): print('This is a thread of %s' % threading.current_thread()) def main(): thread = threading.Thread(target=thread_job,) # 定义线程 thread.start() # 让线程开始工作 if __name__ == '__main__': main()
2、join功能
#不加join() 的結果
我們讓T1
執行緒工作的耗時增加
threading_join.py
# -*- coding:utf-8 -*- """ @author: Corwien @file: threading_join.py @time: 18/8/25 09:14 """ import threading import time def thread_job(): print('T1 start\n') for i in range(10): time.sleep(0.1) # 任务时间0.1s print("T1 finish\n") def main(): added_thread = threading.Thread(target=thread_job, name='T1') # 定义线程 added_thread.start() # 让线程开始工作 print("all done\n") if __name__ == '__main__': main()
預想中輸出的結果是按照順序依序往下執行:
T1 start T1 finish all done
但實際執行結果為:
➜ baseLearn python threading/threading_join.py T1 start all done T1 finish ➜ baseLearn
加入join()的結果
執行緒任務尚未完成便輸出all done
。如果要遵循順序,可以在啟動執行緒後對它呼叫join
:
added_thread.start() added_thread.join() print("all done\n")
列印結果:
➜ baseLearn python threading/threading_join.py T1 start T1 finish all done
完整腳本檔案:
# -*- coding:utf-8 -*- """ @author: Corwien @file: threading_join.py @time: 18/8/25 09:14 """ import threading import time def thread_job(): print('T1 start\n') for i in range(10): time.sleep(0.1) # 任务时间0.1s print("T1 finish\n") def main(): added_thread = threading.Thread(target=thread_job, name='T1') # 定义线程 added_thread.start() # 让线程开始工作 added_thread.join() print("all done\n") if __name__ == '__main__': main()
小試牛刀
如果加入兩個線程,列印的輸出結果是怎麼樣的呢?
# -*- coding:utf-8 -*- """ @author: Corwien @file: threading_join.py @time: 18/8/25 09:14 """ import threading import time def T1_job(): print('T1 start\n') for i in range(10): time.sleep(0.1) # 任务时间0.1s print("T1 finish\n") def T2_job(): print("T2 start\n") print("T2 finish\n") def main(): thread_1 = threading.Thread(target=T1_job, name='T1') # 定义线程 thread_2 = threading.Thread(target=T2_job, name='T2') # 定义线程 thread_1.start() # 开启T1 thread_2.start() # 开启T2 print("all done\n") if __name__ == '__main__': main()
輸出的」一種」結果是:
T1 start T2 start T2 finish all done T1 finish
現在T1和T2都沒有join
,注意這裡說」一種」是因為all done的出現完全取決於兩個執行緒的執行速度, 完全有可能T2 finish出現在all done之後。這種雜亂的執行方式是我們不能忍受的,因此要使用join加以控制。
我們試試在T1啟動後,T2啟動前加上thread_1.join()
:
thread_1.start() thread_1.join() # notice the difference! thread_2.start() print("all done\n")
列印結果:
T1 start T1 finish T2 start all done T2 finish
可以看到,T2會等待T1結束後才開始運作。
3、儲存進程結果Queue
實作功能
程式碼實作功能,將資料清單中的資料傳入,使用四個執行緒處理,將結果保存在Queue中,執行緒執行完後,從Queue中取得儲存的結果
在多執行緒函數中定義一個Queue
,用來儲存回傳值,取代return
,定義一個多線程列表,初始化一個多維資料列表,用來處理:
threading_queue.py
# -*- coding:utf-8 -*- """ @author: Corwien @file: threading_queue.py @time: 18/8/25 09:14 """ import threading import time from queue import Queue def job(l, q): for i in range(len(l)): l[i] = l[i] ** 2 q.put(l) #多线程调用的函数不能用return返回值 def multithreading(): q = Queue() #q中存放返回值,代替return的返回值 threads = [] data = [[1,2,3],[3,4,5],[4,4,4],[5,5,5]] for i in range(4): #定义四个线程 t = threading.Thread(target=job, args=(data[i], q)) #Thread首字母要大写,被调用的job函数没有括号,只是一个索引,参数在后面 t.start() #开始线程 threads.append(t) #把每个线程append到线程列表中 for thread in threads: thread.join() results = [] for _ in range(4): results.append(q.get()) #q.get()按顺序从q中拿出一个值 print(results) if __name__ == '__main__': multithreading()
執行上邊的腳本出現了這樣的錯誤:
➜ baseLearn python threading/threading_queue.py Traceback (most recent call last): File "threading/threading_queue.py", line 11, in <module> from queue import Queue ImportError: No module named queue
查了下原因,是因為python版本導致的:
解決方法:No module named 'Queue'
On Python 2, the module is named Queue, on Python 3, it was renamed to follow PEP8 guidelines (all lowercase for module names), making it queue. The class remains Queue on all versions (following PEP8).
Typically, the way you'd write portion portable w portion port be imbe todable imbe 到do:
python3 中這樣引用:
try: import queue except ImportError: import Queue as queue
在python2 中我們可以這樣引用:
from Queue import Queue
列印:
baseLearn python ./threading/threading_queue.py [[1, 4, 9], [9, 16, 25], [16, 16, 16], [25, 25, 25]]
完整程式碼:
threading_queue.py
# -*- coding:utf-8 -*- """ @author: Corwien @file: threading_queue.py @time: 18/8/25 09:14 """ import threading # import time from Queue import Queue def job(l, q): for i in range(len(l)): l[i] = l[i] ** 2 q.put(l) #多线程调用的函数不能用return返回值 def multithreading(): q = Queue() #q中存放返回值,代替return的返回值 threads = [] data = [[1,2,3],[3,4,5],[4,4,4],[5,5,5]] for i in range(4): #定义四个线程 t = threading.Thread(target=job, args=(data[i], q)) #Thread首字母要大写,被调用的job函数没有括号,只是一个索引,参数在后面 t.start() #开始线程 threads.append(t) #把每个线程append到线程列表中 for thread in threads: thread.join() results = [] for _ in range(4): results.append(q.get()) #q.get()按顺序从q中拿出一个值 print(results) if __name__ == '__main__': multithreading()
4、GIL效率問題
何為GIL?
這次我們來看看為什麼說python 的多線程threading 有時候並不是特別理想. 最主要的原因是就是, Python 的設計上, 有一個必要的環節, 就是Global Interpreter Lock (GIL)
。這個東西讓 Python 還是一次只能處理一個東西。
GIL的解釋:
尽管Python完全支持多线程编程, 但是解释器的C语言实现部分在完全并行执行时并不是线程安全的。 实际上,解释器被一个全局解释器锁保护着,它确保任何时候都只有一个Python线程执行。 GIL最大的问题就是Python的多线程程序并不能利用多核CPU的优势 (比如一个使用了多个线程的计算密集型程序只会在一个单CPU上面运行)。在讨论普通的GIL之前,有一点要强调的是GIL只会影响到那些严重依赖CPU的程序(比如计算型的)。 如果你的程序大部分只会涉及到I/O,比如网络交互,那么使用多线程就很合适, 因为它们大部分时间都在等待。实际上,你完全可以放心的创建几千个Python线程, 现代操作系统运行这么多线程没有任何压力,没啥可担心的。测试GIL
我们创建一个 job
, 分别用 threading 和 一般的方式执行这段程序. 并且创建一个 list 来存放我们要处理的数据. 在 Normal 的时候, 我们这个 list 扩展4倍, 在 threading 的时候, 我们建立4个线程, 并对运行时间进行对比.
threading_gil.py
# -*- coding:utf-8 -*- """ @author: Corwien @file: threading_gil.py @time: 18/8/25 09:14 """ import threading from Queue import Queue import copy import time def job(l, q): res = sum(l) q.put(l) #多线程调用的函数不能用return返回值 def multithreading(l): q = Queue() #q中存放返回值,代替return的返回值 threads = [] for i in range(4): #定义四个线程 t = threading.Thread(target=job, args=(copy.copy(l), q), name="T%i" % i) #Thread首字母要大写,被调用的job函数没有括号,只是一个索引,参数在后面 t.start() #开始线程 threads.append(t) #把每个线程append到线程列表中 [t.join() for t in threads] total = 0 for _ in range(4): total = q.get() #q.get()按顺序从q中拿出一个值 print(total) def normal(l): total = sum(l) print(total) if __name__ == '__main__': l = list(range(1000000)) s_t = time.time() normal(l*4) print('normal:', time.time() - s_t) s_t = time.time() multithreading(l) print('multithreading: ', time.time() - s_t)
如果你成功运行整套程序, 你大概会有这样的输出. 我们的运算结果没错, 所以程序 threading 和 Normal 运行了一样多次的运算. 但是我们发现 threading 却没有快多少, 按理来说, 我们预期会要快3-4倍, 因为有建立4个线程, 但是并没有. 这就是其中的 GIL 在作怪.
1999998000000 normal: 0.10034608840942383 1999998000000 multithreading: 0.08421492576599121
5、线程锁Lock
不使用 Lock 的情况
threading_lock.py
# -*- coding:utf-8 -*- """ @author: Corwien @file: threading_lock.py @time: 18/8/25 09:14 """ import threading # 全局变量A的值每次加1,循环10次,并打印 def job1(): global A for i in range(10): A+=1 print('job1',A) # 全局变量A的值每次加10,循环10次,并打印 def job2(): global A for i in range(10): A+=10 print('job2',A) # 定义两个线程,分别执行函数一和函数二 if __name__== '__main__': A=0 t1=threading.Thread(target=job1) t2=threading.Thread(target=job2) t1.start() t2.start() t1.join() t2.join()
打印输出数据:
➜ baseLearn python ./threading/threading_lock.py ('job1', ('job2'1) , (11)'job1' ('job2', 22) ('job2', 32) ('job2', 42) ('job2', 52) ('job2', 62) ('job2', 72) ('job2', 82) ('job2', 92) ('job2', 102) , 12) ('job1', 103) ('job1', 104) ('job1', 105) ('job1', 106) ('job1', 107) ('job1', 108) ('job1', 109) ('job1', 110)
可以看出,打印的结果非常混乱
使用 Lock 的情况
lock在不同线程使用同一共享内存
时,能够确保线程之间互不影响,使用lock的方法是, 在每个线程执行运算修改共享内存之前,执行lock.acquire()
将共享内存上锁, 确保当前线程执行时,内存不会被其他线程访问,执行运算完毕后,使用lock.release()
将锁打开, 保证其他的线程可以使用该共享内存。
函数一和函数二加锁
def job1(): global A,lock lock.acquire() for i in range(10): A+=1 print('job1',A) lock.release() def job2(): global A,lock lock.acquire() for i in range(10): A+=10 print('job2',A) lock.release()
主函数中定义一个Lock
if __name__== '__main__': lock=threading.Lock() A=0 t1=threading.Thread(target=job1) t2=threading.Thread(target=job2) t1.start() t2.start() t1.join() t2.join()
完整代码:
# -*- coding:utf-8 -*- """ @author: Corwien @file: threading_lock.py @time: 18/8/25 09:14 """ import threading def job1(): global A,lock lock.acquire() for i in range(10): A+=1 print('job1',A) lock.release() def job2(): global A,lock lock.acquire() for i in range(10): A+=10 print('job2',A) lock.release() if __name__== '__main__': lock = threading.Lock() A=0 t1=threading.Thread(target=job1) t2=threading.Thread(target=job2) t1.start() t2.start() t1.join() t2.join()
打印输出:
➜ baseLearn python ./threading/threading_lock.py ('job1', 1) ('job1', 2) ('job1', 3) ('job1', 4) ('job1', 5) ('job1', 6) ('job1', 7) ('job1', 8) ('job1', 9) ('job1', 10) ('job2', 20) ('job2', 30) ('job2', 40) ('job2', 50) ('job2', 60) ('job2', 70) ('job2', 80) ('job2', 90) ('job2', 100) ('job2', 110)
从打印结果来看,使用lock
后,一个一个线程执行完。使用lock
和不使用lock,最后打印输出的结果是不同的。
相关推荐:
以上是python中多線程的詳細介紹(程式碼範例)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

PHP和Python各有優劣,選擇取決於項目需求和個人偏好。 1.PHP適合快速開發和維護大型Web應用。 2.Python在數據科學和機器學習領域佔據主導地位。

在CentOS系統上高效訓練PyTorch模型,需要分步驟進行,本文將提供詳細指南。一、環境準備:Python及依賴項安裝:CentOS系統通常預裝Python,但版本可能較舊。建議使用yum或dnf安裝Python3併升級pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。 CUDA與cuDNN(GPU加速):如果使用NVIDIAGPU,需安裝CUDATool

Docker利用Linux內核特性,提供高效、隔離的應用運行環境。其工作原理如下:1. 鏡像作為只讀模板,包含運行應用所需的一切;2. 聯合文件系統(UnionFS)層疊多個文件系統,只存儲差異部分,節省空間並加快速度;3. 守護進程管理鏡像和容器,客戶端用於交互;4. Namespaces和cgroups實現容器隔離和資源限制;5. 多種網絡模式支持容器互聯。理解這些核心概念,才能更好地利用Docker。

在CentOS系統上啟用PyTorchGPU加速,需要安裝CUDA、cuDNN以及PyTorch的GPU版本。以下步驟將引導您完成這一過程:CUDA和cuDNN安裝確定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA顯卡支持的CUDA版本。例如,您的MX450顯卡可能支持CUDA11.1或更高版本。下載並安裝CUDAToolkit:訪問NVIDIACUDAToolkit官網,根據您顯卡支持的最高CUDA版本下載並安裝相應的版本。安裝cuDNN庫:前

Python和JavaScript在社區、庫和資源方面的對比各有優劣。 1)Python社區友好,適合初學者,但前端開發資源不如JavaScript豐富。 2)Python在數據科學和機器學習庫方面強大,JavaScript則在前端開發庫和框架上更勝一籌。 3)兩者的學習資源都豐富,但Python適合從官方文檔開始,JavaScript則以MDNWebDocs為佳。選擇應基於項目需求和個人興趣。

MinIO對象存儲:CentOS系統下的高性能部署MinIO是一款基於Go語言開發的高性能、分佈式對象存儲系統,與AmazonS3兼容。它支持多種客戶端語言,包括Java、Python、JavaScript和Go。本文將簡要介紹MinIO在CentOS系統上的安裝和兼容性。 CentOS版本兼容性MinIO已在多個CentOS版本上得到驗證,包括但不限於:CentOS7.9:提供完整的安裝指南,涵蓋集群配置、環境準備、配置文件設置、磁盤分區以及MinI

在CentOS下選擇PyTorch版本時,需要考慮以下幾個關鍵因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU並且希望利用GPU加速,需要選擇支持相應CUDA版本的PyTorch。可以通過運行nvidia-smi命令查看你的顯卡支持的CUDA版本。 CPU版本:如果沒有GPU或不想使用GPU,可以選擇CPU版本的PyTorch。 2.Python版本PyTorch

CentOS 安裝 Nginx 需要遵循以下步驟:安裝依賴包,如開發工具、pcre-devel 和 openssl-devel。下載 Nginx 源碼包,解壓後編譯安裝,並指定安裝路徑為 /usr/local/nginx。創建 Nginx 用戶和用戶組,並設置權限。修改配置文件 nginx.conf,配置監聽端口和域名/IP 地址。啟動 Nginx 服務。需要注意常見的錯誤,如依賴問題、端口衝突和配置文件錯誤。性能優化需要根據具體情況調整,如開啟緩存和調整 worker 進程數量。
