目錄
二元樹定義
先序遍歷
遞歸方式
非遞歸方式
中序遍歷
後序遍歷
分層遍歷
#計算二元樹結點個數
計算二元樹深度
計算二元樹第k層節點個數
計算二元樹葉子節點個數
判斷兩個二元樹是不是相同
判斷是否為二分查找樹BST
測試方法
首頁 後端開發 Python教學 Python實作二元樹的演算法實例

Python實作二元樹的演算法實例

Feb 25, 2019 am 10:42 AM
python 二元樹 演算法

這篇文章帶給大家的內容是關於Python實作二元樹的演算法實例,有一定的參考價值,有需要的朋友可以參考一下,希望對你有幫助。

節點定義

class Node(object):
    def __init__(self, left_child, right_child, value):
        self._left_child = left_child
        self._right_child = right_child
        self._value = value

    @property
    def left_child(self):
        return self._left_child

    @property
    def right_child(self):
        return self._right_child

    @left_child.setter
    def left_child(self, value):
        self._left_child = value

    @right_child.setter
    def right_child(self, value):
        self._right_child = value

    @property
    def value(self):
        return self._value

    @value.setter
    def value(self, value):
        self._value = value
登入後複製

二元樹定義

class Tree(object):
    def __init__(self, value):
        self._root = Node(None, None, value=value)

    @property
    def root(self):
        return self._root
登入後複製

先序遍歷

遞歸方式

'''
先序遍历,递归方式
'''
def preoder(root):
    if not isinstance(root, Node):
        return None
    preorder_res = []
    if root:
        preorder_res.append(root.value)
        preorder_res += preoder(root.left_child)
        preorder_res += preoder(root.right_child)

    return preorder_res
登入後複製

非遞歸方式

'''
先序遍历,非递归方式
'''
def pre_order_not_recursion(root):
    if not isinstance(root, Node):
        return None

    stack = [root]
    result = []
    while stack:
        node = stack.pop(-1)
        if node:
            result.append(node.value)
            stack.append(node.right_child)
            stack.append(node.left_child)
    return result
登入後複製

中序遍歷

遞歸方式

'''
中序遍历,递归方式
'''
def middle_order(root):
    if not isinstance(root, Node):
        return None
    middle_res = []
    if root:
        middle_res += middle_order(root.left_child)
        middle_res.append(root.value)
        middle_res += middle_order(root.right_child)
    return middle_res
登入後複製

非遞歸方式

'''
中序遍历,非递归方式
'''
def middle_order_bot_recursion(root):
    if not isinstance(root, Node):
        return None

    result = []
    stack = [root.right_child, root.value, root.left_child]
    while stack:
        temp = stack.pop(-1)
        if temp:
            if isinstance(temp, Node):
                stack.append(temp.right_child)
                stack.append(temp.value)
                stack.append(temp.left_child)
            else:
                result.append(temp)
    return result
登入後複製

後序遍歷

遞歸方式

'''
后序遍历,递归方式
'''
def post_order(root):
    if not isinstance(root, Node):
        return None
    post_res = []
    if root:
        post_res += post_order(root.left_child)
        post_res += post_order(root.right_child)
        post_res.append(root.value)
    return post_res
登入後複製

非遞歸方式

'''
后序遍历,非递归方式
'''
def post_order_not_recursion(root):
    if not isinstance(root, Node):
        return None

    stack = [root.value, root.right_child, root.left_child]
    result = []

    while stack:
        temp_node = stack.pop(-1)
        if temp_node:
            if isinstance(temp_node, Node):
                stack.append(temp_node.value)
                stack.append(temp_node.right_child)
                stack.append(temp_node.left_child)
            else:
                result.append(temp_node)

    return result
登入後複製

分層遍歷

'''
分层遍历,使用队列实现
'''
def layer_order(root):
    if not isinstance(root, Node):
        return None

    queue = [root.value, root.left_child, root.right_child]
    result = []
    while queue:
        temp = queue.pop(0)
        if temp:
            if isinstance(temp, Node):
                queue.append(temp.value)
                queue.append(temp.left_child)
                queue.append(temp.right_child)
            else:
                result.append(temp)

    return result
登入後複製

#計算二元樹結點個數

'''
计算二叉树结点个数,递归方式
NodeCount(root) = NodeCount(root.left_child) + NodeCount(root.right_child)
'''
def node_count(root):
    if root and not isinstance(root, Node):
        return None

    if root:
        return node_count(root.left_child) + node_count(root.right_child) + 1
    else:
        return 0


'''
计算二叉树结点个数,非递归方式
借用分层遍历计算
'''
def node_count_not_recursion(root):
    if root and not isinstance(root, Node):
        return None

    return len(layer_order(root))
登入後複製

計算二元樹深度

'''
计算二叉树深度,递归方式
tree_deep(root) = 1 + max(tree_deep(root.left_child), tree_deep(root.right_child))
'''
def tree_deep(root):
    if root and not isinstance(root, Node):
        return None

    if root:
        return 1 + max(tree_deep(root.left_child), tree_deep(root.right_child))
    else:
        return 0

'''
计算二叉树深度,非递归方法
同理参考分层遍历的思想
'''
def tree_deep_not_recursion(root):
    if root and not isinstance(root, Node):
        return None
    result = 0
    queue = [(root, 1)]
    while queue:
        temp_node, temp_layer = queue.pop(0)
        if temp_node:
            queue.append((temp_node.left_child, temp_layer+1))
            queue.append((temp_node.right_child, temp_layer+1))
            result = temp_layer + 1

    return result-1
登入後複製

計算二元樹第k層節點個數

'''
计算二叉树第k层节点个数,递归方式
kth_node_count(root, k) = kth_node_count(root.left_count, k-1) + kth_node_count(root.right_count, k-1)
'''
def kth_node_count(root, k):
    if root and not isinstance(root, Node):
        return None

    if not root or k <= 0:
        return 0
    if k == 1:
        return 1
    return kth_node_count(root.left_child, k-1) + kth_node_count(root.right_child, k-1)

&#39;&#39;&#39;
计算二叉树第K层节点个数,非递归方式
&#39;&#39;&#39;
def kth_node_count_not_recursion(root, k):
    if root and not isinstance(root, Node):
        return None

    if not root or k <= 0:
        return 0

    if k == 1:
        return 1

    queue = [(root, 1)]
    result = 0
    while queue:
        temp_node, temp_layer = queue.pop(0)
        if temp_node:
            if temp_layer == k:
                result += 1
            elif temp_layer > k:
                return result
            else:
                queue.append((temp_node.left_child, temp_layer+1))
                queue.append((temp_node.right_child, temp_layer+1))
    return result
登入後複製

計算二元樹葉子節點個數

'''
计算二叉树叶子节点个数,递归方式
关键点是叶子节点的判断标准,左右孩子皆为None
'''
def leaf_count(root):
    if root and not isinstance(root, Node):
        return None

    if not root:
        return 0
    if not root.left_child and not root.right_child:
        return 1

    return leaf_count(root.left_child) + leaf_count(root.right_child)
登入後複製

判斷兩個二元樹是不是相同

'''
判断两个二叉树是不是相同,递归方式
isSame(root1, root2) = (root1.value == root2.value)
                    and isSame(root1.left, root2.left) 
                    and isSame(root1.right, root2.right)
'''
def is_same_tree(root1, root2):
    if not root1 and not root2:
        return True

    if root1 and root2:
        return (root1.value == root2.value) and \
               is_same_tree(root1.left_child, root2.left_child) and \
               is_same_tree(root1.right_child, root2.right_child)
    else:
        return False
登入後複製

判斷是否為二分查找樹BST

'''
判断是否为二分查找树BST,递归方式
二分查找树的定义搞清楚,二分查找树的中序遍历结果为递增序列
'''
def is_bst_tree(root):
    if root and not isinstance(root, Node):
        return None

    def is_asc(order):
        for i in range(len(order)-1):
            if order[i] > order[i+1]:
                return False
        return True

    return is_asc(middle_order_bot_recursion(root))
登入後複製

測試方法

if __name__ == "__main__":
    tree = Tree(1)
    tree1 = Tree(1)
    node6 = Node(None, None, 7)
    node5 = Node(None, None, 6)
    node4 = Node(None, None, 5)
    node3 = Node(None, None, 4)
    node2 = Node(node5, node6, 3)
    node1 = Node(node3, node4, 2)
    tree.root.left_child = node1
    tree.root.right_child = node2
    tree1.root.left_child = node2
    tree1.root.right_child = node2
    print(is_bst_tree(tree.root))
登入後複製

#

以上是Python實作二元樹的演算法實例的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:代碼示例和比較 PHP和Python:代碼示例和比較 Apr 15, 2025 am 12:07 AM

PHP和Python各有優劣,選擇取決於項目需求和個人偏好。 1.PHP適合快速開發和維護大型Web應用。 2.Python在數據科學和機器學習領域佔據主導地位。

CentOS上如何進行PyTorch模型訓練 CentOS上如何進行PyTorch模型訓練 Apr 14, 2025 pm 03:03 PM

在CentOS系統上高效訓練PyTorch模型,需要分步驟進行,本文將提供詳細指南。一、環境準備:Python及依賴項安裝:CentOS系統通常預裝Python,但版本可能較舊。建議使用yum或dnf安裝Python3併升級pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。 CUDA與cuDNN(GPU加速):如果使用NVIDIAGPU,需安裝CUDATool

docker原理詳解 docker原理詳解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux內核特性,提供高效、隔離的應用運行環境。其工作原理如下:1. 鏡像作為只讀模板,包含運行應用所需的一切;2. 聯合文件系統(UnionFS)層疊多個文件系統,只存儲差異部分,節省空間並加快速度;3. 守護進程管理鏡像和容器,客戶端用於交互;4. Namespaces和cgroups實現容器隔離和資源限制;5. 多種網絡模式支持容器互聯。理解這些核心概念,才能更好地利用Docker。

CentOS上PyTorch的GPU支持情況如何 CentOS上PyTorch的GPU支持情況如何 Apr 14, 2025 pm 06:48 PM

在CentOS系統上啟用PyTorchGPU加速,需要安裝CUDA、cuDNN以及PyTorch的GPU版本。以下步驟將引導您完成這一過程:CUDA和cuDNN安裝確定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA顯卡支持的CUDA版本。例如,您的MX450顯卡可能支持CUDA11.1或更高版本。下載並安裝CUDAToolkit:訪問NVIDIACUDAToolkit官網,根據您顯卡支持的最高CUDA版本下載並安裝相應的版本。安裝cuDNN庫:前

Python vs. JavaScript:社區,圖書館和資源 Python vs. JavaScript:社區,圖書館和資源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社區、庫和資源方面的對比各有優劣。 1)Python社區友好,適合初學者,但前端開發資源不如JavaScript豐富。 2)Python在數據科學和機器學習庫方面強大,JavaScript則在前端開發庫和框架上更勝一籌。 3)兩者的學習資源都豐富,但Python適合從官方文檔開始,JavaScript則以MDNWebDocs為佳。選擇應基於項目需求和個人興趣。

CentOS下PyTorch版本怎麼選 CentOS下PyTorch版本怎麼選 Apr 14, 2025 pm 02:51 PM

在CentOS下選擇PyTorch版本時,需要考慮以下幾個關鍵因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU並且希望利用GPU加速,需要選擇支持相應CUDA版本的PyTorch。可以通過運行nvidia-smi命令查看你的顯卡支持的CUDA版本。 CPU版本:如果沒有GPU或不想使用GPU,可以選擇CPU版本的PyTorch。 2.Python版本PyTorch

minio安裝centos兼容性 minio安裝centos兼容性 Apr 14, 2025 pm 05:45 PM

MinIO對象存儲:CentOS系統下的高性能部署MinIO是一款基於Go語言開發的高性能、分佈式對象存儲系統,與AmazonS3兼容。它支持多種客戶端語言,包括Java、Python、JavaScript和Go。本文將簡要介紹MinIO在CentOS系統上的安裝和兼容性。 CentOS版本兼容性MinIO已在多個CentOS版本上得到驗證,包括但不限於:CentOS7.9:提供完整的安裝指南,涵蓋集群配置、環境準備、配置文件設置、磁盤分區以及MinI

CentOS上PyTorch的分佈式訓練如何操作 CentOS上PyTorch的分佈式訓練如何操作 Apr 14, 2025 pm 06:36 PM

在CentOS系統上進行PyTorch分佈式訓練,需要按照以下步驟操作:PyTorch安裝:前提是CentOS系統已安裝Python和pip。根據您的CUDA版本,從PyTorch官網獲取合適的安裝命令。對於僅需CPU的訓練,可以使用以下命令:pipinstalltorchtorchvisiontorchaudio如需GPU支持,請確保已安裝對應版本的CUDA和cuDNN,並使用相應的PyTorch版本進行安裝。分佈式環境配置:分佈式訓練通常需要多台機器或單機多GPU。所

See all articles