首頁 > 後端開發 > php教程 > Fpm啟動機制及流程的詳細分析(附程式碼)

Fpm啟動機制及流程的詳細分析(附程式碼)

不言
發布: 2023-04-05 13:16:01
轉載
3167 人瀏覽過

這篇文章帶給大家的內容是關於Fpm啟動機制及流程的詳細分析(附程式碼),有一定的參考價值,有需要的朋友可以參考一下,希望對你有幫助。

FPM(FastCGI Process Manager)是PHP FastCGI運作模式的一個行程管理器,從它的定義可以看出,FPM的核心功能是進程管理,那麼它用來管理什麼進程呢?這個問題就需要從FastCGI說起了。

FastCGI是Web伺服器(如:Nginx、Apache)和處理程序之間的一種通訊協議,它是與Http類似的一種應用層通訊協議,注意:它只是一種協定!

前面曾經一再強調,PHP只是一個腳本解析器,你可以把它理解為一個普通的函數,輸入是PHP腳本。輸出是執行結果,假如我們想用PHP代替shell,在命令列中執行一個文件,那麼就可以寫一個程式來嵌入PHP解析器,這就是cli模式,這種模式下PHP就是普通的一個命令工具。接著我們又想:能不能讓PHP處理http請求呢?這時就牽涉到了網路處理,PHP需要接收請求、解析協議,然後處理完成回傳請求。在網路應用場景下,PHP並沒有像Golang那樣實現http網路庫,而是實現了FastCGI協議,然後與web伺服器配合實現了http的處理,web伺服器來處理http請求,然後將解析的結果再通過FastCGI協定轉發給處理程序,處理程序處理完成後將結果傳回web伺服器,web伺服器再傳回用戶,如下圖所示。

PHP實現了FastCGI協定的解析,但是並沒有具體實現網絡處理,一般的處理模型:多進程、多線程,多進程模型通常是主進程只負責管理子進程,而基本的網絡事件由各個子程序處理,nginx、fpm就是這種模式;另一種多執行緒模型與多行程類似,只是它是執行緒粒度,通常會由主執行緒監聽、接收請求,然後交由子執行緒處理,memcached就是這種模式,有的也是採用多進程那種模式:主執行緒只負責管理子執行緒不處理網路事件,各個子執行緒監聽、接收、處理請求,memcached使用udp協定時採用的是這種模式。

1.3.2 基本實作
概括來說,fpm的實作就是創建一個master進程,在master進程中創建並監聽socket,然後fork出多個子進程,這些子進程各自accept請求,子進程的處理非常簡單,它在啟動後阻塞在accept上,有請求到達後開始讀取請求數據,讀取完成後開始處理然後再返回,在這期間是不會接收其它請求的,也就是說fpm的子程序同時只能回應一個請求,只有把這個請求處理完成後才會accept下一個請求,這一點與nginx的事件驅動有很大的區別,nginx的子程序通過epoll管理套接字,如果一個請求資料尚未發送完成則會處理下一個請求,即一個進程會同時連接多個請求,它是非阻塞的模型,只處理活躍的套接字。

fpm的master進程與worker進程之間不會直接進行通信,master透過共享記憶體獲取worker進程的信息,例如worker進程當前狀態、已處理請求數等,當master進程要殺掉一個worker進程時則透過發送訊號的方式通知worker進程。

fpm可以同時監聽多個端口,每個端口對應一個worker pool,而每個pool下對應多個worker進程,類似nginx中server概念。

在php-fpm.conf中透過[pool name]宣告一個worker pool:

[web1]
listen = 127.0.0.1:9000
...

[web2]
listen = 127.0.0.1:9001
...
啟動fpm後查看進程:ps -aux|grep fpm

#root 27155 0.0 0.1 144704 2720 ? Ss 15:16 0:00 php-fpm: master process (/usr/local/php7/etc/php-fpm.conf)
nobody 27156 0.0 0.1 144676 2416 ? S 15:16 0:00 php-fpm : pool web1
nobody 27157 0.0 0.1 144676 2416 ? S 15:16 0:00 php-fpm: pool web1
nobody 27159 0.0 0.1 144680 ##nobody 27159 0.0 0.1 144680 233f ##nobody 27160 0.0 0.1 144680 2376 ? S 15:16 0:00 php-fpm: pool web2
#具體實作上worker pool透過fpm_worker_pool_s這個結構表示,多個worker pool#具體實作上worker pool透過fpm_worker_pool_s這個結構表示,多個worker pool組成一個單鍊錶:#rrrpool ##1.3.3 FPM的初始化
接下來看下fpm的啟動流程,從main()函數開始:

struct fpm_worker_pool_s {
struct fpm_worker_pool_s next; //指向下一个worker pool
struct fpm_worker_pool_config_s config; //conf配置:pm、max_children、start_servers...
int listening_socket; //监听的套接字
...
//以下这个值用于master定时检查、记录worker数
struct fpm_child_s *children; //当前pool的worker链表
int running_children; //当前pool的worker运行总数
int idle_spawn_rate;
int warn_max_children;

struct fpm_scoreboard_s *scoreboard; //记录worker的运行信息,比如空闲、忙碌worker数
...
}
登入後複製

fpm_init()主要有以下幾個關鍵操作:

#(1)fpm_conf_init_main():

解析php-fpm.conf設定文件,分配worker pool記憶體結構並儲存到全域變數:fpm_worker_all_pools,各worker pool設定解析到fpm_worker_pool_s->config。

(2)fpm​​_scoreboard_init_main(): 分配用於記錄worker進程運行資訊的共享內存,按照worker pool的最大worker進程數分配,每個worker pool分配一個fpm_scoreboard_s結構,pool下對應的每個worker進程分配一個fpm_scoreboard_proc_s結構,各結構的對應關係如下圖。

(3)fpm_signals_init_main():

static int sp[2];
int fpm_signals_init_main()
{
struct sigaction act;
//创建一个全双工管道
if (0 > socketpair(AF_UNIX, SOCK_STREAM, 0, sp)) {
    return -1;
}
//注册信号处理handler
act.sa_handler = sig_handler;
sigfillset(&act.sa_mask);
if (0 > sigaction(SIGTERM,  &act, 0) ||
    0 > sigaction(SIGINT,   &act, 0) ||
    0 > sigaction(SIGUSR1,  &act, 0) ||
    0 > sigaction(SIGUSR2,  &act, 0) ||
    0 > sigaction(SIGCHLD,  &act, 0) ||
    0 > sigaction(SIGQUIT,  &act, 0)) {
    return -1;
}
return 0;
}
登入後複製

这里会通过socketpair()创建一个管道,这个管道并不是用于master与worker进程通信的,它只在master进程中使用,具体用途在稍后介绍event事件处理时再作说明。另外设置master的信号处理handler,当master收到SIGTERM、SIGINT、SIGUSR1、SIGUSR2、SIGCHLD、SIGQUIT这些信号时将调用sig_handler()处理:

static void sig_handler(int signo)
{
static const char sig_chars[NSIG + 1] = {
[SIGTERM] = 'T',
[SIGINT] = 'I',
[SIGUSR1] = '1',
[SIGUSR2] = '2',
[SIGQUIT] = 'Q',
[SIGCHLD] = 'C'
};
char s;
...
s = sig_chars[signo];
//将信号通知写入管道sp[1]端
write(sp[1], &s, sizeof(s));
...
}
登入後複製

(4)fpm_sockets_init_main()

创建每个worker pool的socket套接字。

(5)fpm_event_init_main():

启动master的事件管理,fpm实现了一个事件管理器用于管理IO、定时事件,其中IO事件通过kqueue、epoll、poll、select等管理,定时事件就是定时器,一定时间后触发某个事件。

在fpm_init()初始化完成后接下来就是最关键的fpm_run()操作了,此环节将fork子进程,启动进程管理器,另外master进程将不会再返回,只有各worker进程会返回,也就是说fpm_run()之后的操作均是worker进程的。

int fpm_run(int max_requests)
{
struct fpm_worker_pool_s wp;
for (wp = fpm_worker_all_pools; wp; wp = wp->next) {
//调用fpm_children_make() fork子进程
is_parent = fpm_children_create_initial(wp);
   if (!is_parent) {
        goto run_child;
    }
}
//master进程将进入event循环,不再往下走
fpm_event_loop(0);
run_child: //只有worker进程会到这里
*max_requests = fpm_globals.max_requests;
return fpm_globals.listening_socket; //返回监听的套接字
}
登入後複製

在fork后worker进程返回了监听的套接字继续main()后面的处理,而master将永远阻塞在fpm_event_loop(),接下来分别介绍master、worker进程的后续操作。

1.3.4 请求处理
fpm_run()执行后将fork出worker进程,worker进程返回main()中继续向下执行,后面的流程就是worker进程不断accept请求,然后执行PHP脚本并返回。整体流程如下:

(1)等待请求: worker进程阻塞在fcgi_accept_request()等待请求;
(2)解析请求: fastcgi请求到达后被worker接收,然后开始接收并解析请求数据,直到request数据完全到达;
(3)请求初始化: 执行php_request_startup(),此阶段会调用每个扩展的:PHP_RINIT_FUNCTION();
(4)编译、执行: 由php_execute_script()完成PHP脚本的编译、执行;
(5)关闭请求: 请求完成后执行php_request_shutdown(),此阶段会调用每个扩展的:PHP_RSHUTDOWN_FUNCTION(),然后进入步骤(1)等待下一个请求。

int main(int argc, char *argv[])
{
...
fcgi_fd = fpm_run(&max_requests);
parent = 0;
//初始化fastcgi请求
request = fpm_init_request(fcgi_fd);

//worker进程将阻塞在这,等待请求
while (EXPECTED(fcgi_accept_request(request) >= 0)) {
    SG(server_context) = (void *) request;
    init_request_info();
    
    //请求开始
    if (UNEXPECTED(php_request_startup() == FAILURE)) {
        ...
    }
    ...

    fpm_request_executing();
    //编译、执行PHP脚本
    php_execute_script(&file_handle);
    ...
    //请求结束
    php_request_shutdown((void *) 0);
    ...
}
...
//worker进程退出
php_module_shutdown();
...
}
登入後複製

worker进程一次请求的处理被划分为5个阶段:

FPM_REQUEST_ACCEPTING: 等待请求阶段
FPM_REQUEST_READING_HEADERS: 读取fastcgi请求header阶段
FPM_REQUEST_INFO: 获取请求信息阶段,此阶段是将请求的method、query stirng、request uri等信息保存到各worker进程的fpm_scoreboard_proc_s结构中,此操作需要加锁,因为master进程也会操作此结构
FPM_REQUEST_EXECUTING: 执行请求阶段
FPM_REQUEST_END: 没有使用
FPM_REQUEST_FINISHED: 请求处理完成
worker处理到各个阶段时将会把当前阶段更新到fpm_scoreboard_proc_s->request_stage,master进程正是通过这个标识判断worker进程是否空闲的。

1.3.5 进程管理
这一节我们来看下master是如何管理worker进程的,首先介绍下三种不同的进程管理方式:

static: 这种方式比较简单,在启动时master按照pm.max_children配置fork出相应数量的worker进程,即worker进程数是固定不变的
dynamic: 动态进程管理,首先在fpm启动时按照pm.start_servers初始化一定数量的worker,运行期间如果master发现空闲worker数低于pm.min_spare_servers配置数(表示请求比较多,worker处理不过来了)则会fork worker进程,但总的worker数不能超过pm.max_children,如果master发现空闲worker数超过了pm.max_spare_servers(表示闲着的worker太多了)则会杀掉一些worker,避免占用过多资源,master通过这4个值来控制worker数
ondemand: 这种方式一般很少用,在启动时不分配worker进程,等到有请求了后再通知master进程fork worker进程,总的worker数不超过pm.max_children,处理完成后worker进程不会立即退出,当空闲时间超过pm.process_idle_timeout后再退出
前面介绍到在fpm_run()master进程将进入fpm_event_loop():

void fpm_event_loop(int err)
{
//创建一个io read的监听事件,这里监听的就是在fpm_init()阶段中通过socketpair()创建管道sp[0]
//当sp[0]可读时将回调fpm_got_signal()
fpm_event_set(&signal_fd_event, fpm_signals_get_fd(), FPM_EV_READ, &fpm_got_signal, NULL);
fpm_event_add(&signal_fd_event, 0);
//如果在php-fpm.conf配置了request_terminate_timeout则启动心跳检查
if (fpm_globals.heartbeat > 0) {
    fpm_pctl_heartbeat(NULL, 0, NULL);
}
//定时触发进程管理
fpm_pctl_perform_idle_server_maintenance_heartbeat(NULL, 0, NULL);

//进入事件循环,master进程将阻塞在此
while (1) {
    ...
    //等待IO事件
    ret = module->wait(fpm_event_queue_fd, timeout);
    ...
    //检查定时器事件
    ...
}
}
登入後複製

这就是master整体的处理,其进程管理主要依赖注册的几个事件,接下来我们详细分析下这几个事件的功能。

(1)sp[1]管道可读事件:

在fpm_init()阶段master曾创建了一个全双工的管道:sp,然后在这里创建了一个sp[0]可读的事件,当sp[0]可读时将交由fpm_got_signal()处理,向sp[1]写数据时sp[0]才会可读,那么什么时机会向sp[1]写数据呢?前面已经提到了:当master收到注册的那几种信号时会写入sp[1]端,这个时候将触发sp[0]可读事件。

这个事件是master用于处理信号的,我们根据master注册的信号逐个看下不同用途:

SIGINT/SIGTERM/SIGQUIT: 退出fpm,在master收到退出信号后将向所有的worker进程发送退出信号,然后master退出
SIGUSR1: 重新加载日志文件,生产环境中通常会对日志进行切割,切割后会生成一个新的日志文件,如果fpm不重新加载将无法继续写入日志,这个时候就需要向master发送一个USR1的信号
SIGUSR2: 重启fpm,首先master也是会向所有的worker进程发送退出信号,然后master会调用execvp()重新启动fpm,最后旧的master退出
SIGCHLD: 这个信号是子进程退出时操作系统发送给父进程的,子进程退出时,内核将子进程置为僵尸状态,这个进程称为僵尸进程,它只保留最小的一些内核数据结构,以便父进程查询子进程的退出状态,只有当父进程调用wait或者waitpid函数查询子进程退出状态后子进程才告终止,fpm中当worker进程因为异常原因(比如coredump了)退出而非master主动杀掉时master将受到此信号,这个时候父进程将调用waitpid()查下子进程的退出,然后检查下是不是需要重新fork新的worker
具体处理逻辑在fpm_got_signal()函数中,这里不再罗列。

(2)fpm_pctl_perform_idle_server_maintenance_heartbeat():

这是进程管理实现的主要事件,master启动了一个定时器,每隔1s触发一次,主要用于dynamic、ondemand模式下的worker管理,master会定时检查各worker pool的worker进程数,通过此定时器实现worker数量的控制,处理逻辑如下:

static void fpm_pctl_perform_idle_server_maintenance(struct timeval now)
{
for (wp = fpm_worker_all_pools; wp; wp = wp->next) {
struct fpm_child_s last_idle_child = NULL; //空闲时间最久的worker
int idle = 0; //空闲worker数
int active = 0; //忙碌worker数
    for (child = wp->children; child; child = child->next) {
        //根据worker进程的fpm_scoreboard_proc_s->request_stage判断
        if (fpm_request_is_idle(child)) {
            //找空闲时间最久的worker
            ...
            idle++;
        }else{
            active++;
        }
    }
    ...
    //ondemand模式
    if (wp->config->pm == PM_STYLE_ONDEMAND) {
        if (!last_idle_child) continue;

        fpm_request_last_activity(last_idle_child, &last);
        fpm_clock_get(&now);
        if (last.tv_sec < now.tv_sec - wp->config->pm_process_idle_timeout) {
            //如果空闲时间最长的worker空闲时间超过了process_idle_timeout则杀掉该worker
            last_idle_child->idle_kill = 1;
            fpm_pctl_kill(last_idle_child->pid, FPM_PCTL_QUIT);
        } 
        continue;
    }
    //dynamic
    if (wp->config->pm != PM_STYLE_DYNAMIC) continue;
    if (idle > wp->config->pm_max_spare_servers && last_idle_child) {
        //空闲worker太多了,杀掉
        last_idle_child->idle_kill = 1;
        fpm_pctl_kill(last_idle_child->pid, FPM_PCTL_QUIT);
        wp->idle_spawn_rate = 1;
        continue;
    }
    if (idle < wp->config->pm_min_spare_servers) {
        //空闲worker太少了,如果总worker数未达到max数则fork
        ...
    }
}
}
登入後複製

(3)fpm_pctl_heartbeat():

这个事件是用于限制worker处理单个请求最大耗时的,php-fpm.conf中有一个request_terminate_timeout的配置项,如果worker处理一个请求的总时长超过了这个值那么master将会向此worker进程发送kill -TERM信号杀掉worker进程,此配置单位为秒,默认值为0表示关闭此机制,另外fpm打印的slow log也是在这里完成的。

static void fpm_pctl_check_request_timeout(struct timeval now)
{
struct fpm_worker_pool_s wp;
for (wp = fpm_worker_all_pools; wp; wp = wp->next) {
    int terminate_timeout = wp->config->request_terminate_timeout;
    int slowlog_timeout = wp->config->request_slowlog_timeout;
    struct fpm_child_s *child;

    if (terminate_timeout || slowlog_timeout) { 
        for (child = wp->children; child; child = child->next) {
            //检查当前当前worker处理的请求是否超时
            fpm_request_check_timed_out(child, now, terminate_timeout, slowlog_timeout);
        }
    }
}
}
登入後複製

除了上面这几个事件外还有一个没有提到,那就是ondemand模式下master监听的新请求到达的事件,因为ondemand模式下fpm启动时是不会预创建worker的,有请求时才会生成子进程,所以请求到达时需要通知master进程,这个事件是在fpm_children_create_initial()时注册的,事件处理函数为fpm_pctl_on_socket_accept(),具体逻辑这里不再展开,比较容易理解。

到目前为止我们已经把fpm的核心实现介绍完了,事实上fpm的实现还是比较简单的。

以上是Fpm啟動機制及流程的詳細分析(附程式碼)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
fpm
來源:cnblogs.com
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
作者最新文章
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板