這篇文章帶給大家的內容是關於Python中資料預處理(程式碼),有一定的參考價值,有需要的朋友可以參考一下,希望對你有幫助。
1、導入標準庫import numpy as np import matplotlib.pyplot as plt import pandas as pd
2、導入資料集
dataset = pd.read_csv('data (1).csv') # read_csv:读取csv文件 #创建一个包含所有自变量的矩阵,及因变量的向量 #iloc表示选取数据集的某行某列;逗号之前的表示行,之后的表示列;冒号表示选取全部,没有冒号,则表示选取第几列;values表示选取数据集里的数据。 X = dataset.iloc[:, :-1].values # 选取数据,不选取最后一列。 y = dataset.iloc[:, 3].values # 选取数据,选取每行的第3列数据
3、缺少資料
##
from sklearn.preprocessing import Imputer #进行数据挖掘及数据分析的标准库,Imputer缺失数据的处理 #Imputer中的参数:missing_values 缺失数据,定义怎样辨认确实数据,默认值:nan ;strategy 策略,补缺值方式 : mean-平均值 , median-中值 , most_frequent-出现次数最多的数 ; axis =0取列 =1取行 imputer = Imputer(missing_values = 'NaN', strategy = 'mean', axis = 0) imputer = imputer.fit(X[:, 1:3])#拟合fit X[:, 1:3] = imputer.transform(X[:, 1:3])
from sklearn.preprocessing import LabelEncoder,OneHotEncoder labelencoder_X=LabelEncoder() X[:,0]=labelencoder_X.fit_transform(X[:,0]) onehotencoder=OneHotEncoder(categorical_features=[0]) X=onehotencoder.fit_transform(X).toarray() #因为Purchased是因变量,Python里面的函数可以将其识别为分类数据,所以只需要LabelEncoder转换为分类数字 labelencoder_y=LabelEncoder() y=labelencoder_y.fit_transform(y)
5、將資料集分為訓練集和測試集
from sklearn.model_selection import train_test_split X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=0) #X_train(训练集的字变量),X_test(测试集的字变量),y_train(训练集的因变量),y_test(训练集的因变量) #训练集所占的比重0.2~0.25,某些情况也可分配1/3的数据给训练集;train_size训练集所占的比重 #random_state决定随机数生成的方式,随机的将数据分配给训练集和测试集;random_state相同时会得到相同的训练集和测试集
#特征缩放(两种方式:一:Standardisation(标准化);二:Normalisation(正常化)) from sklearn.preprocessing import StandardScaler sc_X=StandardScaler() X_train=sc_X.fit_transform(X_train)#拟合,对X_train进行缩放 X_test=sc_X.transform(X_test)#sc_X已经被拟合好了,所以对X_test进行缩放时,直接转换X_test
7、資料預處理範本
(1)導入標準函式庫(2)導入資料集
(3)缺失和分類很少遇到
(4)將資料集分割為訓練集和測試集
(5)特徵縮放,大部分情況下不需要,但是某些情況需要特徵縮放
以上是Python中資料預處理(程式碼)的詳細內容。更多資訊請關注PHP中文網其他相關文章!