如何理解資料結構與演算法(Python)
Python中資料結構和演算法的理解:Python中資料結構指的是靜態的描述資料元素之間的關係,演算法指的是解決問題的方法或步驟,換句話說演算法是為了解決實際問題而設計的,資料結構是演算法需要處理的問題載體。
資料結構和演算法是程式開發人員的必備基本功,所以需要我們平時不斷的主動去學習積累,接下來將自在文章中為大家具體介紹這兩個知識點,希望對大家有幫助。
【推薦課程:Python教學】
引入概念
先來看一題:
若a b c=1000,且a2 b2=c^2(a,b,c 為自然數),如何求出所有a、b、c可能的組合?
第一次嘗試
import time start_time = time.time() # 注意是三重循环 for a in range(0, 1001): for b in range(0, 1001): for c in range(0, 1001): if a**2 + b**2 == c**2 and a+b+c == 1000: print("a, b, c: %d, %d, %d" % (a, b, c)) end_time = time.time() print("elapsed: %f" % (end_time - start_time)) print("complete!")
運行結果:
a, b, c: 0, 500, 500 a, b, c: 200, 375, 425 a, b, c: 375, 200, 425 a, b, c: 500, 0, 500 elapsed: 1066.117884 complete!
運行時間竟然多達17.8分鐘
演算法的提出
#演算法的概念
##演算法是電腦處理訊息的本質,因為電腦程式本質上是一個演算法來告訴電腦確切的步驟來執行一個指定的任務。一般地,當演算法在處理資訊時,會從輸入設備或數據的儲存位址讀取數據,把結果寫入輸出設備或某個儲存位址供以後再呼叫。演算法是獨立存在的一種解決問題的方法和想法。
對於演算法而言,實現的語言並不重要,重要的是思想。
演算法可以有不同的語言描述實作版本(如C描述、C 描述、Python描述等),我們現在是在用Python語言進行描述實作。
演算法的五大特性
輸入: 演算法具有0個或多個輸入輸出: 演算法至少有1個或多個輸出有窮性: 演算法在有限的步驟之後會自動結束而不會無限循環,並且每一個步驟可以在可接受的時間內完成#確定性:演算法中的每一步都有確定的意義,不會出現二義性可行性:演算法的每一步都是可行的,也就是說每一步都能夠執行有限的次數完成# #第二次嘗試import time
start_time = time.time()
# 注意是两重循环
for a in range(0, 1001):
for b in range(0, 1001-a):
c = 1000 - a - b
if a**2 + b**2 == c**2:
print("a, b, c: %d, %d, %d" % (a, b, c))
end_time = time.time()print("elapsed: %f" % (end_time - start_time))print("complete!")
a, b, c: 0, 500, 500 a, b, c: 200, 375, 425 a, b, c: 375, 200, 425 a, b, c: 500, 0, 500 elapsed: 0.632128
注意運行時間0.632128秒
演算法效率衡量##執行時間反應演算法效率
對於同一個問題,我們給了兩種解決演算法,在兩種演算法的實作中,我們對程式執行的時間進行了測算,發現兩段程式執行的時間相差懸殊,由此我們可以得出一個結論:實作演算法程式的執行時間可以反映出演算法的效率,也就是演算法的優劣。單靠時間值絕對可信嗎?
假設我們將第二次嘗試的演算法程式運行在一台配置古老效能低的電腦中,情況會如何?很可能運行的時間並不會比在我們的電腦中運行演算法一的時間快多少。 #########單純依靠運行的時間來比較演算法的優劣不一定是客觀準確的! #########程式的運作離不開電腦環境(包括硬體和作業系統),這些客觀原因會影響程式運作的速度並反應在程式的執行時間上。那麼如何才能客觀的評判一個演算法的優劣呢? #########時間複雜度與「大O記法」#########我們假定電腦執行演算法每一個基本運算的時間是固定的一個時間單位,那麼有多少個基本操作就代表會花費多少時間單位。既然對於不同的機器環境而言,確切的單位時間是不同的,但是對於演算法進行多少個基本操作(即花費多少時間單位)在規模數量級上卻是相同的,因此可以忽略機器環境的影響而客觀的反應演算法的時間效率。 ######對於演算法的時間效率,我們可以用「大O記法」來表示。 ######「大O記法」:對於單調的整數函數f,如果存在一個整數函數g和實常數c>0,使得對於充分大的n總有f(n)<=c* g(n),就說函數g是f的一個漸近函數(忽略常數),記為f(n)=O(g(n))。也就是說,在趨向無窮的極限意義下,函數f的成長速度受到函數g的約束,也就是函數f與函數g的特徵相似。 ######時間複雜度:假設存在函數g,使得演算法A處理規模為n的問題範例所用時間為T(n)=O(g(n)),則稱O(g(n))為演算法A的漸近時間複雜度,簡稱時間複雜度,記為T(n)##########如何理解「大O記法」######对于算法进行特别具体的细致分析虽然很好,但在实践中的实际价值有限。对于算法的时间性质和空间性质,最重要的是其数量级和趋势,这些是分析算法效率的主要部分。而计量算法基本操作数量的规模函数中那些常量因子可以忽略不计。例如,可以认为3n2和100n2属于同一个量级,如果两个算法处理同样规模实例的代价分别为这两个函数,就认为它们的效率“差不多”,都为n2级。
最坏时间复杂度
分析算法时,存在几种可能的考虑:
算法完成工作最少需要多少基本操作,即最优时间复杂度
算法完成工作最多需要多少基本操作,即最坏时间复杂度
算法完成工作平均需要多少基本操作,即平均时间复杂度
对于最优时间复杂度,其价值不大,因为它没有提供什么有用信息,其反映的只是最乐观最理想的情况,没有参考价值。
对于最坏时间复杂度,提供了一种保证,表明算法在此种程度的基本操作中一定能完成工作。
对于平均时间复杂度,是对算法的一个全面评价,因此它完整全面的反映了这个算法的性质。但另一方面,这种衡量并没有保证,不是每个计算都能在这个基本操作内完成。而且,对于平均情况的计算,也会因为应用算法的实例分布可能并不均匀而难以计算。
因此,我们主要关注算法的最坏情况,亦即最坏时间复杂度。
时间复杂度的几条基本计算规则
基本操作,即只有常数项,认为其时间复杂度为O(1)
顺序结构,时间复杂度按加法进行计算
循环结构,时间复杂度按乘法进行计算
分支结构,时间复杂度取最大值
判断一个算法的效率时,往往只需要关注操作数量的最高次项,其它次要项和常数项可以忽略
在没有特殊说明时,我们所分析的算法的时间复杂度都是指最坏时间复杂度
算法分析
第一次尝试的算法核心部分
or a in range(0, 1001): for b in range(0, 1001): for c in range(0, 1001): if a**2 + b**2 == c**2 and a+b+c == 1000: print("a, b, c: %d, %d, %d" % (a, b, c))
时间复杂度:
T(n) = O(n * n * n) = O(n³)
第二次尝试的算法核心部分
for a in range(0, 1001): for b in range(0, 1001-a): c = 1000 - a - b if a**2 + b**2 == c**2: print("a, b, c: %d, %d, %d" % (a, b, c))
时间复杂度:
T(n) = O(n * n * (1+1)) = O(n * n) = O(n²)
由此可见,我们尝试的第二种算法要比第一种算法的时间复杂度好多的。
常见时间复杂度
执行次数函数举例 | 阶 | 非正式术语 |
---|---|---|
12 | O(1) | 常数阶 |
2n + 3 | O(n) | 线性阶 |
3n² +2n + 1 | O(n²) | 平方阶 |
5log2n+20 | O(logn) | 对数阶 |
2n+3nlog2n+19 | O(nlogn) | nlogn阶 |
6n³ +2n² +3n + 1 | O(n³) | 立方阶 |
2n | O(2n) | 指数阶 |
注意,经常将log2n(以2为底的对数)简写成logn
常见时间复杂度之间的关系
所消耗的时间从小到大
O(1) < O(logn) < O(n) < O(nlogn) < O(n2) < O(n3) < O(2n) < O(n!) < O(nn)
Python内置类型性能分析
timeit模块
timeit模块可以用来测试一小段Python代码的执行速度。
class timeit.Timer(stmt='pass', setup='pass', timer=<timer function>)
Timer是测量小段代码执行速度的类。
stmt参数是要测试的代码语句(statment)
setup参数是运行代码时需要的设置
timer参数是一个定时器函数,与平台有关。
timeit.Timer.timeit(number=1000000)
Timer类中测试语句执行速度的对象方法。number参数是测试代码时的测试次数,默认为1000000次。方法返回执行代码的平均耗时,一个float类型的秒数。
list的操作测试
def test1(): l = [] for i in range(1000): l = l + [i]def test2(): l = [] for i in range(1000): l.append(i)def test3(): l = [i for i in range(1000)]def test4(): l = list(range(1000))from timeit import Timer t1 = Timer("test1()", "from __main__ import test1") print("concat ",t1.timeit(number=1000), "seconds") t2 = Timer("test2()", "from __main__ import test2") print("append ",t2.timeit(number=1000), "seconds") t3 = Timer("test3()", "from __main__ import test3") print("comprehension ",t3.timeit(number=1000), "seconds") t4 = Timer("test4()", "from __main__ import test4") print("list range ",t4.timeit(number=1000), "seconds") # ('concat ', 1.7890608310699463, 'seconds') # ('append ', 0.13796091079711914, 'seconds') # ('comprehension ', 0.05671119689941406, 'seconds') # ('list range ', 0.014147043228149414, 'seconds')
pop操作测试
x = range(2000000) pop_zero = Timer("x.pop(0)","from __main__ import x") print("pop_zero ",pop_zero.timeit(number=1000), "seconds") x = range(2000000) pop_end = Timer("x.pop()","from __main__ import x") print("pop_end ",pop_end.timeit(number=1000), "seconds") # ('pop_zero ', 1.9101738929748535, 'seconds') # ('pop_end ', 0.00023603439331054688, 'seconds')
测试pop操作:从结果可以看出,pop最后一个元素的效率远远高于pop第一个元素
可以自行尝试下list的append(value)和insert(0,value),即一个后面插入和一个前面插入???
list内置操作的时间复杂度
dict内置操作的时间复杂度
数据结构
概念
数据是一个抽象的概念,将其进行分类后得到程序设计语言中的基本类型。如:int,float,char等。数据元素之间不是独立的,存在特定的关系,这些关系便是结构。数据结构指数据对象中数据元素之间的关系。
Python给我们提供了很多现成的数据结构类型,这些系统自己定义好的,不需要我们自己去定义的数据结构叫做Python的内置数据结构,比如列表、元组、字典。而有些数据组织方式,Python系统里面没有直接定义,需要我们自己去定义实现这些数据的组织方式,这些数据组织方式称之为Python的扩展数据结构,比如栈,队列等。
算法与数据结构的区别
数据结构只是静态的描述了数据元素之间的关系。
高效的程序需要在数据结构的基础上设计和选择算法。
程序 = 数据结构 + 算法
总结:算法是为了解决实际问题而设计的,数据结构是算法需要处理的问题载体
抽象数据类型(Abstract Data Type)
抽象数据类型(ADT)的含义是指一个数学模型以及定义在此数学模型上的一组操作。即把数据类型和数据类型上的运算捆在一起,进行封装。引入抽象数据类型的目的是把数据类型的表示和数据类型上运算的实现与这些数据类型和运算在程序中的引用隔开,使它们相互独立。
最常用的数据运算有五种
插入
删除
修改
查找
排序
以上是如何理解資料結構與演算法(Python)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

寫在前面&筆者的個人理解目前,在整個自動駕駛系統當中,感知模組扮演了其中至關重要的角色,行駛在道路上的自動駕駛車輛只有通過感知模組獲得到準確的感知結果後,才能讓自動駕駛系統中的下游規控模組做出及時、正確的判斷和行為決策。目前,具備自動駕駛功能的汽車中通常會配備包括環視相機感測器、光達感測器以及毫米波雷達感測器在內的多種數據資訊感測器來收集不同模態的信息,用於實現準確的感知任務。基於純視覺的BEV感知演算法因其較低的硬體成本和易於部署的特點,以及其輸出結果能便捷地應用於各種下游任務,因此受到工業

C++中機器學習演算法面臨的常見挑戰包括記憶體管理、多執行緒、效能最佳化和可維護性。解決方案包括使用智慧指標、現代線程庫、SIMD指令和第三方庫,並遵循程式碼風格指南和使用自動化工具。實作案例展示如何利用Eigen函式庫實現線性迴歸演算法,有效地管理記憶體和使用高效能矩陣操作。

C++sort函數底層採用歸併排序,其複雜度為O(nlogn),並提供不同的排序演算法選擇,包括快速排序、堆排序和穩定排序。

人工智慧(AI)與執法領域的融合為犯罪預防和偵查開啟了新的可能性。人工智慧的預測能力被廣泛應用於CrimeGPT(犯罪預測技術)等系統,用於預測犯罪活動。本文探討了人工智慧在犯罪預測領域的潛力、目前的應用情況、所面臨的挑戰以及相關技術可能帶來的道德影響。人工智慧和犯罪預測:基礎知識CrimeGPT利用機器學習演算法來分析大量資料集,識別可以預測犯罪可能發生的地點和時間的模式。這些資料集包括歷史犯罪統計資料、人口統計資料、經濟指標、天氣模式等。透過識別人類分析師可能忽視的趨勢,人工智慧可以為執法機構

Java中比較複雜資料結構時,使用Comparator提供靈活的比較機制。具體步驟包括:定義比較器類,重寫compare方法定義比較邏輯。建立比較器實例。使用Collections.sort方法,傳入集合和比較器實例。

01前景概要目前,難以在檢測效率和檢測結果之間取得適當的平衡。我們研究了一種用於高解析度光學遙感影像中目標偵測的增強YOLOv5演算法,利用多層特徵金字塔、多重偵測頭策略和混合注意力模組來提高光學遙感影像的目標偵測網路的效果。根據SIMD資料集,新演算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在偵測結果和速度之間達到了更好的平衡。 02背景&動機隨著遠感技術的快速發展,高解析度光學遠感影像已被用於描述地球表面的許多物體,包括飛機、汽車、建築物等。目標檢測在遠感影像的解釋中

一、58畫像平台建置背景首先和大家分享下58畫像平台的建造背景。 1.傳統的畫像平台傳統的想法已經不夠,建立用戶畫像平台依賴數據倉儲建模能力,整合多業務線數據,建構準確的用戶畫像;還需要數據挖掘,理解用戶行為、興趣和需求,提供演算法側的能力;最後,還需要具備數據平台能力,有效率地儲存、查詢和共享用戶畫像數據,提供畫像服務。業務自建畫像平台和中台類型畫像平台主要區別在於,業務自建畫像平台服務單條業務線,按需定制;中台平台服務多條業務線,建模複雜,提供更為通用的能力。 2.58中台畫像建構的背景58的使用者畫像

資料結構與演算法是Java開發的基礎,本文深入探討Java中的關鍵資料結構(如陣列、鍊錶、樹等)和演算法(如排序、搜尋、圖演算法等)。這些結構透過實戰案例進行說明,包括使用陣列儲存分數、使用鍊錶管理購物清單、使用堆疊實現遞歸、使用佇列同步執行緒以及使用樹和雜湊表進行快速搜尋和身份驗證等。理解這些概念可以編寫高效且可維護的Java程式碼。
