目錄
建立
首頁 web前端 js教程 基於TensorFlow.js的JavaScript機器學習

基於TensorFlow.js的JavaScript機器學習

Apr 29, 2019 am 09:44 AM
java javascript tensorflow 函數 機器學習

本篇文章講述的是基於TensorFlow.js的JavaScript機器學習,具有一定參考價值,有興趣的朋友可以了解一下。

基於TensorFlow.js的JavaScript機器學習

雖然python或r程式語言有一個相對容易的學習曲線,但是Web開發人員更喜歡在他們舒適的javascript區域內做事情。目前來看,node.js已經開始在每個領域應用javascript,在這一大趨勢下我們需要理解並使用JS進行機器學習。由於可用的軟體包數量眾多,python變得流行起來,但是JS社群也緊隨其後。這篇文章將幫助初學者學習如何建立一個簡單的分類器。

建立

我們可以建立一個使用tensorflow.js在瀏覽器中訓練模型的網頁。考慮到房屋的“avgareanumberofrows”,模型可以學習去預測房屋的“價格”。

為此我們要做的是:

載入資料並為培訓做好準備。

定義模型的體系結構。

訓練模型並在訓練時監控其表現。

透過做出一些預測來評估經過訓練的模型。

第一步:讓我們從基礎開始

建立一個HTML頁面並包含JavaScript。將以下程式碼複製到名為index.html的HTML檔案中。

<!DOCTYPE html>
<html>
<head>
  <title>TensorFlow.js Tutorial</title>
  <!-- Import TensorFlow.js -->
  <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs@1.0.0/dist/tf.min.js"></script>
  <!-- Import tfjs-vis -->
  <script src="https://cdn.jsdelivr.net/npm/@tensorflow/tfjs-vis@1.0.2/dist/tfjs-vis.umd.min.js"></script>
  <!-- Import the main script file -->
  <script src="script.js"></script>
</head>
<body>
</body>
</html>
登入後複製

為程式碼建立javascript文件

在與上面的HTML文件相同的資料夾中,建立一個名為script.js的文件,並將以下程式碼放入其中。

console.log(&#39;Hello TensorFlow&#39;);
登入後複製

測試

既然已經創建了HTML和JavaScript文件,那麼就測試一下它們。在瀏覽器中開啟index.html檔案並開啟devtools控制台。

如果一切正常,那麼應該在devtools控制台中建立並可用兩個全域變數:

  • tf是對tensorflow.js庫的引用
  • ##tfvis是對tfjs vis函式庫的引用
現在你應該可以看到一則訊息,上面寫著「Hello TensorFlow」。如果是這樣,你就可以繼續下一步了。

基於TensorFlow.js的JavaScript機器學習

注意:可以使用Bit來共享可重複使用的JS程式碼

Bit(GitHub上的Bit)是跨專案和應用程式共享可重複使用JavaScript程式碼的最快和最可擴展的方式。可以試一試,它是免費的:

元件發現與協作·Bit

Bit是開發人員共享元件和協作,共同建立令人驚嘆的軟體的地方。發現共享的元件…

Bit.dev

例如:Ramda用作共享元件

Ramda by Ramda·Bit

一個用於JavaScript程式設計師的實用函數庫。 -256個javascript元件。例如:等號,乘…

Bit.dev

第2步:載入數據,格式化資料並視覺化輸入資料

我們將載入「house ”數據集,可以在這裡找到。它包含了特定房子的許多不同特徵。對於本教程,我們只需要有關房間平均面積和每套房子價格的數據。

將以下程式碼加入script.js檔案。

async function getData() {
  Const houseDataReq=await
fetch(&#39;https://raw.githubusercontent.com/meetnandu05/ml1/master/house.json&#39;);  
  const houseData = await houseDataReq.json();  
  const cleaned = houseData.map(house => ({
    price: house.Price,
    rooms: house.AvgAreaNumberofRooms,
  }))
  .filter(house => (house.price != null && house.rooms != null));

  return cleaned;
}
登入後複製

這可以刪除沒有定義價格或房間數量的任何條目。我們可以將這些資料繪製成散點圖,看看它是什麼樣子的。

將以下程式碼加入script.js檔案的底部。

async function run() {
  // Load and plot the original input data that we are going to train on.
  const data = await getData();
  const values = data.map(d => ({
    x: d.rooms,
    y: d.price,
  }));
  tfvis.render.scatterplot(
    {name: &#39;No.of rooms v Price&#39;},
    {values}, 
    {
      xLabel: &#39;No. of rooms&#39;,
      yLabel: &#39;Price&#39;,
      height: 300
    }
  );
  // More code will be added below
}
document.addEventListener(&#39;DOMContentLoaded&#39;, run);
登入後複製

刷新頁面時,你可以在頁面左側看到一個面板,上面有資料的散佈圖,如下圖。

基於TensorFlow.js的JavaScript機器學習

通常,在處理資料時,最好找到方法來查看數據,並在必要時對其進行清理。可視化資料可以讓我們了解模型是否可以學習資料的任何結構。

從上面的圖中可以看出,房間數量與價格之間存在正相關關係,即隨著房間數量的增加,房屋價格普遍上漲。

第三步:建立待訓練的模型

這一步我們將寫程式碼來建立機器學習模型。模型主要基於此程式碼進行架構,所以這是一個比較重要的步驟。機器學習模型接受輸入,然後產生輸出。對於tensorflow.js,我們必須建立神經網路。

將以下函數新增至script.js檔案以定義模型。

function createModel() {
  // Create a sequential model
  const model = tf.sequential(); 

  // Add a single hidden layer
  model.add(tf.layers.dense({inputShape: [1], units: 1, useBias: true}));

  // Add an output layer
  model.add(tf.layers.dense({units: 1, useBias: true}));
  return model;
}
登入後複製

這是我們可以在tensorflow.js中定義的最簡單的模型之一,我們來試下簡單分解每一行。

實例化模型

const model = tf.sequential();
登入後複製

這將實例化一個tf.model物件。這個模型是連續的,因為它的輸入直接流向它的輸出。其他類型的模型可以有分支,甚至可以有多個輸入和輸出,但在許多情況下,你的模型是連續的。

新增層

model.add(tf.layers.dense({inputShape: [1], units: 1, useBias: true}));
登入後複製

这为我们的网络添加了一个隐藏层。因为这是网络的第一层,所以我们需要定义我们的输入形状。输入形状是[1],因为我们有1这个数字作为输入(给定房间的房间数)。

单位(链接)设置权重矩阵在层中的大小。在这里将其设置为1,我们可以说每个数据输入特性都有一个权重。

model.add(tf.layers.dense({units: 1}));
登入後複製

上面的代码创建了我们的输出层。我们将单位设置为1,因为我们要输出1这个数字。

创建实例

将以下代码添加到前面定义的运行函数中。

// Create the model
const model = createModel();  
tfvis.show.modelSummary({name: &#39;Model Summary&#39;}, model);
登入後複製

这样可以创建实例模型,并且在网页上有显示层的摘要。

基於TensorFlow.js的JavaScript機器學習

步骤4:为创建准备数据

为了获得TensorFlow.js的性能优势,使培训机器学习模型实用化,我们需要将数据转换为Tensors。

将以下代码添加到script.js文件中。

function convertToTensor(data) {

  return tf.tidy(() => {
    // Step 1\. Shuffle the data    
    tf.util.shuffle(data);
    // Step 2\. Convert data to Tensor
    const inputs = data.map(d => d.rooms)
    const labels = data.map(d => d.price);
    const inputTensor = tf.tensor2d(inputs, [inputs.length, 1]);
    const labelTensor = tf.tensor2d(labels, [labels.length, 1]);
    //Step 3\. Normalize the data to the range 0 - 1 using min-max scaling
    const inputMax = inputTensor.max();
    const inputMin = inputTensor.min();  
    const labelMax = labelTensor.max();
    const labelMin = labelTensor.min();
    const normalizedInputs = inputTensor.sub(inputMin).p(inputMax.sub(inputMin));
    const normalizedLabels = labelTensor.sub(labelMin).p(labelMax.sub(labelMin));
    return {
      inputs: normalizedInputs,
      labels: normalizedLabels,
      // Return the min/max bounds so we can use them later.
      inputMax,
      inputMin,
      labelMax,
      labelMin,
    }
  });  
}
登入後複製

接下来,我们可以分析一下将会出现什么情况。

随机播放数据

// Step 1\. Shuffle the data    
tf.util.shuffle(data);
登入後複製

在训练模型的过程中,数据集被分成更小的集合,每个集合称为一个批。然后将这些批次送入模型运行。整理数据很重要,因为模型不应该一次又一次地得到相同的数据。如果模型一次又一次地得到相同的数据,那么模型将无法归纳数据,并为运行期间收到的输入提供指定的输出。洗牌将有助于在每个批次中拥有各种数据。

转换为Tensor

// Step 2\. Convert data to Tensor
const inputs = data.map(d => d.rooms)
const labels = data.map(d => d.price);
const inputTensor = tf.tensor2d(inputs, [inputs.length, 1]);
const labelTensor = tf.tensor2d(labels, [labels.length, 1]);
登入後複製

这里我们制作了两个数组,一个用于输入示例(房间条目数),另一个用于实际输出值(在机器学习中称为标签,在我们的例子中是每个房子的价格)。然后我们将每个数组数据转换为一个二维张量。

规范化数据

//Step 3\. Normalize the data to the range 0 - 1 using min-max scaling
const inputMax = inputTensor.max();
const inputMin = inputTensor.min();  
const labelMax = labelTensor.max();
const labelMin = labelTensor.min();
const normalizedInputs = inputTensor.sub(inputMin).p(inputMax.sub(inputMin));
const normalizedLabels = labelTensor.sub(labelMin).p(labelMax.sub(labelMin));
登入後複製

接下来,我们规范化数据。在这里,我们使用最小-最大比例将数据规范化为数值范围0-1。规范化很重要,因为您将使用tensorflow.js构建的许多机器学习模型的内部设计都是为了使用不太大的数字。规范化数据以包括0到1或-1到1的公共范围。

返回数据和规范化界限

return {
  inputs: normalizedInputs,
  labels: normalizedLabels,
  // Return the min/max bounds so we can use them later.
  inputMax,
  inputMin,
  labelMax,
  labelMin,
}
登入後複製

我们可以在运行期间保留用于标准化的值,这样我们就可以取消标准化输出,使其恢复到原始规模,我们就可以用同样的方式规范化未来的输入数据。

步骤5:运行模型

通过创建模型实例、将数据表示为张量,我们可以准备开始运行模型。

将以下函数复制到script.js文件中。

async function trainModel(model, inputs, labels) {
  // Prepare the model for training.  
  model.compile({
    optimizer: tf.train.adam(),
    loss: tf.losses.meanSquaredError,
    metrics: [&#39;mse&#39;],
  });

  const batchSize = 28;
  const epochs = 50;

  return await model.fit(inputs, labels, {
    batchSize,
    epochs,
    shuffle: true,
    callbacks: tfvis.show.fitCallbacks(
      { name: &#39;Training Performance&#39; },
      [&#39;loss&#39;, &#39;mse&#39;], 
      { height: 200, callbacks: [&#39;onEpochEnd&#39;] }
    )
  });
}
登入後複製

我们把它分解一下。

准备运行

// Prepare the model for training.  
model.compile({
  optimizer: tf.train.adam(),
  loss: tf.losses.meanSquaredError,
  metrics: [&#39;mse&#39;],
});
登入後複製

我们必须在训练前“编译”模型。要做到这一点,我们必须明确一些非常重要的事情:

优化器:这是一个算法,它可以控制模型的更新,就像上面看到的例子一样。TensorFlow.js中有许多可用的优化器。这里我们选择了Adam优化器,因为它在实践中非常有效,不需要进行额外配置。

损失函数:这是一个函数,它用于检测模型所显示的每个批(数据子集)方面完成的情况如何。在这里,我们可以使用meansquaredrror将模型所做的预测与真实值进行比较。

度量:这是我们要在每个区块结束时用来计算的度量数组。我们可以用它计算整个训练集的准确度,这样我们就可以检查自己的运行结果了。这里我们使用mse,它是meansquaredrror的简写。这是我们用于损失函数的相同函数,也是回归任务中常用的函数。

const batchSize = 28;
const epochs = 50;
登入後複製

接下来,我们选择一个批量大小和一些时间段:

batchSize指的是模型在每次运行迭代时将看到的数据子集的大小。常见的批量大小通常在32-512之间。对于所有问题来说,并没有一个真正理想的批量大小,描述各种批量大小的精确方式这一知识点本教程没有相关讲解,对这些有兴趣可以通过别的渠道进行了解学习。

epochs指的是模型将查看你提供的整个数据集的次数。在这里,我们通过数据集进行50次迭代。

启动列车环路

return model.fit(inputs, labels, {
  batchSize,
  epochs,
  callbacks: tfvis.show.fitCallbacks(
    { name: &#39;Training Performance&#39; },
    [&#39;loss&#39;, &#39;mse&#39;], 
    { 
      height: 200, 
      callbacks: [&#39;onEpochEnd&#39;]
    }
  )
});
登入後複製

model.fit是我们调用的启动循环的函数。它是一个异步函数,因此我们返回它给我们的特定值,以便调用者可以确定运行结束时间。

为了监控运行进度,我们将一些回调传递给model.fit。我们使用tfvis.show.fitcallbacks生成函数,这些函数可以为前面指定的“损失”和“毫秒”度量绘制图表。

把它们放在一起

现在我们必须调用从运行函数定义的函数。

将以下代码添加到运行函数的底部。

// Convert the data to a form we can use for training.
const tensorData = convertToTensor(data);
const {inputs, labels} = tensorData;

// Train the model  
await trainModel(model, inputs, labels);
console.log(&#39;Done Training&#39;);
登入後複製

刷新页面时,几秒钟后,你应该会看到图形正在更新。

这些是由我们之前创建的回调创建的。它们在每个时代结束时显示丢失(在最近的批处理上)和毫秒(在整个数据集上)。

当训练一个模型时,我们希望看到损失减少。在这种情况下,因为我们的度量是一个误差度量,所以我们希望看到它也下降。

第6步:做出预测

既然我们的模型经过了训练,我们想做一些预测。让我们通过观察它预测的低到高数量房间的统一范围来评估模型。

将以下函数添加到script.js文件中

function testModel(model, inputData, normalizationData) {
  const {inputMax, inputMin, labelMin, labelMax} = normalizationData;  

  // Generate predictions for a uniform range of numbers between 0 and 1;
  // We un-normalize the data by doing the inverse of the min-max scaling 
  // that we did earlier.
  const [xs, preds] = tf.tidy(() => {

    const xs = tf.linspace(0, 1, 100);      
    const preds = model.predict(xs.reshape([100, 1]));      

    const unNormXs = xs
      .mul(inputMax.sub(inputMin))
      .add(inputMin);

    const unNormPreds = preds
      .mul(labelMax.sub(labelMin))
      .add(labelMin);

    // Un-normalize the data
    return [unNormXs.dataSync(), unNormPreds.dataSync()];
  });

  const predictedPoints = Array.from(xs).map((val, i) => {
    return {x: val, y: preds[i]}
  });

  const originalPoints = inputData.map(d => ({
    x: d.rooms, y: d.price,
  }));

  tfvis.render.scatterplot(
    {name: &#39;Model Predictions vs Original Data&#39;}, 
    {values: [originalPoints, predictedPoints], series: [&#39;original&#39;, &#39;predicted&#39;]}, 
    {
      xLabel: &#39;No. of rooms&#39;,
      yLabel: &#39;Price&#39;,
      height: 300
    }
  );
}
登入後複製

在上面的函数中需要注意的一些事情。

const xs = tf.linspace(0, 1, 100);      
const preds = model.predict(xs.reshape([100, 1]));
登入後複製

我们生成100个新的“示例”以提供给模型。model.predict是我们如何将这些示例输入到模型中的。注意,他们需要有一个类似的形状([num_的例子,num_的特点每个_的例子])当我们做培训时。

// Un-normalize the data
const unNormXs = xs
  .mul(inputMax.sub(inputMin))
  .add(inputMin);

const unNormPreds = preds
  .mul(labelMax.sub(labelMin))
  .add(labelMin);
登入後複製

为了将数据恢复到原始范围(而不是0–1),我们使用规范化时计算的值,但只需反转操作。

return [unNormXs.dataSync(), unNormPreds.dataSync()];
登入後複製

.datasync()是一种方法,我们可以使用它来获取存储在张量中的值的typedarray。这允许我们在常规的javascript中处理这些值。这是通常首选的.data()方法的同步版本。

最后,我们使用tfjs-vis来绘制原始数据和模型中的预测。

将以下代码添加到运行函数中。

testModel(model, data, tensorData);
登入後複製

刷新页面,现在已经完成啦!

现在你已经学会使用tensorflow.js创建一个简单的机器学习模型了。

相关教程:JavaScript视频教程

以上是基於TensorFlow.js的JavaScript機器學習的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

突破或從Java 8流返回? 突破或從Java 8流返回? Feb 07, 2025 pm 12:09 PM

Java 8引入了Stream API,提供了一種強大且表達力豐富的處理數據集合的方式。然而,使用Stream時,一個常見問題是:如何從forEach操作中中斷或返回? 傳統循環允許提前中斷或返回,但Stream的forEach方法並不直接支持這種方式。本文將解釋原因,並探討在Stream處理系統中實現提前終止的替代方法。 延伸閱讀: Java Stream API改進 理解Stream forEach forEach方法是一個終端操作,它對Stream中的每個元素執行一個操作。它的設計意圖是處

PHP:網絡開發的關鍵語言 PHP:網絡開發的關鍵語言 Apr 13, 2025 am 12:08 AM

PHP是一種廣泛應用於服務器端的腳本語言,特別適合web開發。 1.PHP可以嵌入HTML,處理HTTP請求和響應,支持多種數據庫。 2.PHP用於生成動態網頁內容,處理表單數據,訪問數據庫等,具有強大的社區支持和開源資源。 3.PHP是解釋型語言,執行過程包括詞法分析、語法分析、編譯和執行。 4.PHP可以與MySQL結合用於用戶註冊系統等高級應用。 5.調試PHP時,可使用error_reporting()和var_dump()等函數。 6.優化PHP代碼可通過緩存機制、優化數據庫查詢和使用內置函數。 7

PHP與Python:了解差異 PHP與Python:了解差異 Apr 11, 2025 am 12:15 AM

PHP和Python各有優勢,選擇應基於項目需求。 1.PHP適合web開發,語法簡單,執行效率高。 2.Python適用於數據科學和機器學習,語法簡潔,庫豐富。

Java程序查找膠囊的體積 Java程序查找膠囊的體積 Feb 07, 2025 am 11:37 AM

膠囊是一種三維幾何圖形,由一個圓柱體和兩端各一個半球體組成。膠囊的體積可以通過將圓柱體的體積和兩端半球體的體積相加來計算。本教程將討論如何使用不同的方法在Java中計算給定膠囊的體積。 膠囊體積公式 膠囊體積的公式如下: 膠囊體積 = 圓柱體體積 兩個半球體體積 其中, r: 半球體的半徑。 h: 圓柱體的高度(不包括半球體)。 例子 1 輸入 半徑 = 5 單位 高度 = 10 單位 輸出 體積 = 1570.8 立方單位 解釋 使用公式計算體積: 體積 = π × r2 × h (4

PHP與其他語言:比較 PHP與其他語言:比較 Apr 13, 2025 am 12:19 AM

PHP適合web開發,特別是在快速開發和處理動態內容方面表現出色,但不擅長數據科學和企業級應用。與Python相比,PHP在web開發中更具優勢,但在數據科學領域不如Python;與Java相比,PHP在企業級應用中表現較差,但在web開發中更靈活;與JavaScript相比,PHP在後端開發中更簡潔,但在前端開發中不如JavaScript。

PHP與Python:核心功能 PHP與Python:核心功能 Apr 13, 2025 am 12:16 AM

PHP和Python各有優勢,適合不同場景。 1.PHP適用於web開發,提供內置web服務器和豐富函數庫。 2.Python適合數據科學和機器學習,語法簡潔且有強大標準庫。選擇時應根據項目需求決定。

創造未來:零基礎的 Java 編程 創造未來:零基礎的 Java 編程 Oct 13, 2024 pm 01:32 PM

Java是熱門程式語言,適合初學者和經驗豐富的開發者學習。本教學從基礎概念出發,逐步深入解說進階主題。安裝Java開發工具包後,可透過建立簡單的「Hello,World!」程式來實踐程式設計。理解程式碼後,使用命令提示字元編譯並執行程序,控制台上將輸出「Hello,World!」。學習Java開啟了程式設計之旅,隨著掌握程度加深,可創建更複雜的應用程式。

如何在Spring Tool Suite中運行第一個春季啟動應用程序? 如何在Spring Tool Suite中運行第一個春季啟動應用程序? Feb 07, 2025 pm 12:11 PM

Spring Boot簡化了可靠,可擴展和生產就緒的Java應用的創建,從而徹底改變了Java開發。 它的“慣例慣例”方法(春季生態系統固有的慣例),最小化手動設置

See all articles