r語言和python有必要都學嗎
R和Python是目前最受歡迎的兩款高階程式語言,被大量運用於資料科學領域。兩者都是開源的,也都有非常活躍的社群來支持。那麼問題來了:r語言和python有必要都學嗎
#R:
R語言由紐西蘭奧克蘭大學的Ross Ihaka和Robert Gentleman於1995設計出來(由於兩人的名字均以'R' 字母開頭,因此命名為R語言),現在由“R核心開發團隊“負責開發。
雖然R主要用於資料分析、繪圖以及資料探勘,但也有人被用來當作矩陣計算。其計算速度可媲美專用於矩陣計算的開源軟體GNU Octave和商業軟體MATLAB。
起初R主要在學術研究中使用,但近年來在企業界也表現突出,這使得R成為企業中使用的全球發展最快的統計語言之一。對於資料科學任務,R的語法更直覺形象
對於資料處理任務,很多時候R的文法會比較簡單。函數和參數的命名設計也更好,很容易記住和使用。
舉個例子,我們將分別用R和Python來刪掉Iris資料框中的兩個變數(由於R和Python都有Iris資料框,因此我們使用這個資料框)。
我們來看看各自的語法:
Python
import seaborn as sns import pandas as pd iris = sns.load_dataset('iris') iris.drop(['sepal_length', 'species'], axis = 1)
R
library(dplyr) select(iris, -sepal_length, -species)
為了刪除變量,Python中使用了drop函數,而R中使用了select函數。我們來比較這兩個函數(都在最後一行程式碼)的語法。
先講Python,drop函數命名得很好,容易記住。但是參數設計得很複雜。
第一個參數是包含想要刪除變數的列表,Python中用方括號[ ]代表列表。這裡你必須要用方括號,變數一定要用引號' ',要不然程式碼會執行錯誤。
在資料視覺化方面,R非常優秀
視覺化是選擇資料分析軟體的一個重要的標準。
除了擅長資料分析外,R的另一個閃光點就是它的畫圖能力特別強,幾乎可以畫出所有類型的圖。不信的話,你可以穀歌一下,輸入 'R visualization' 關鍵字。
Python的優勢
對於資料科學初學者,儘管我強烈推薦學R,但也不是唯一的選擇。
對於某些人,Python可能是最好的選擇。下面講一下哪些情況下選擇Python比較好。
如果你有軟體開發或電腦科學基礎,學Python
如果你曾經有軟體開發經驗或是電腦科學專業的話,我認為Python會更適合你。因為你已經有程式設計經驗了,使用Python會讓你更舒服。
想開發軟體,學Python
我已經說了R比較擅長資料科學。如果你想建立軟體系統的話,我認為Python更合適。 Python的閃光點就是寫軟體,效率很高。就像一些專家所說的那樣,寫Python程式碼就如同寫偽代碼。
此外,Python是一門通用語言,基本啥都能幹。然而R比較專,只是擅長統計分析和視覺化。
我想澄清一下,不是說R不能寫軟體。只是更多人喜歡用Python去建立產品軟體。因此身為資料科學家,如果你想創立軟體系統,我覺得Python比R更適合。
想搞機器學習,學Python
如果你想長期從事機器學習的研究,我建議你學Python。
其實R也有機器學習生態系。特別地,R的caret 套件開發得很好,它有能力完成各種機器學習任務。例如:使用caret套件建立迴歸模型(regression model)、支援向量機(SVM)、決策樹(包括迴歸和分類)以及執行交叉驗證(cross validation)等等。總之,R的機器學習生態系統發展得很好。
但是,Python在機器學習上的支援出現更早。為了實現各種不同機器學習方法,Python的scikit-learn函式庫提供一套更簡潔易讀的語法。而R中caret包的語法有時有點拙劣。尤其,caret包與Tidyverse套件相容得不是很好,輸出的結果有時也很難處理。相反,Python的scikit-learn庫與Python生態環境整合得很好。
市面上有關機器學習的書籍,其演算法實現很多都是用Python寫的。
總之,如果你想致力於機器學習,我認為Python會更好。
想搞深度學習,學Python
深度學習可謂是目前人工智慧領域最熱門的技術之一,而Python則是深度學習使用最熱門的語言。
大多數深度學習框架都有Python接口,例如:TensorFlow,Keras,Pytorch,Theano,MXNET等等。
Python與各框架相容得非常好,擁有大量貢獻者、搜尋結果、相關書籍和學術文章;Github上的深度學習專案大多數都是用Python寫的。如果你是剛入門深度學習的新手,使用Keras是不錯的選擇。
相比較,R對深度學習框架相容方面表現不佳。因此如果你想專注於深度學習,Python可能更適合。
學R還是Python? 主要還是依耐你的背景以及你的目標。
如果你沒有任何程式設計經驗,建議你先學R;如果你想學資料視覺化,我認為R的ggplot2套件是最好的工具;如果你想專門從事資料分析和資料挖掘,R表現更優秀。
如果你想成為機器學習專家,Python的scikit-learn函式庫可以好好研究一下;如果你想開發軟體系統,Python比較適合。
俗話說,技多不壓身,你還有第三個選擇:R和Python都學。實際上很多頂尖資料科學家這兩門語言都會。不過對於新手,一次只學一門。同時學兩門會讓你很混亂,學習週期會拉長,事也倍功半。
以上是r語言和python有必要都學嗎的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。
