python如何提高運行速度
說現在最流行的語言,就不得不提python。但python雖然容易上手,但速度卻有點感人。如何用簡單的方法讓python加速到近乎可以媲美C的速度呢?
今天來就來談談numba這個寶貝。對你沒看錯,不是numpy,就是numba。 (推薦學習:Python影片教學)
numba是Python的即時編譯器,它最適用於使用NumPy陣列和函數以及循環的程式碼。使用Numba的最常用方法是透過其裝飾器集合,可以應用於您的函數來指示Numba編譯它們。當呼叫Numba修飾函數時,它被編譯為機器碼「及時」執行,並且您的全部或部分程式碼隨後可以以本機機器碼速度運行!
在面對一個計算project的時候,我們最容易想到的就是直接碼程式碼,最後寫出一個超長的程式。這樣一來,一旦出錯往往需要花很多時間定位問題。
有一個簡單的辦法解決這個問題,就是定義各種各樣的函數,把任務分解成很多小部分。因為每個函數都不是特別複雜,並且在寫好的時候就可以隨時檢查,因此簡潔的主程式一旦出問題就很容易定位並解決。物件導向程式設計的想法就是基於函數。
寫好函數之後,也可以使用裝飾器(decorator)讓它變得強大。裝飾器本身就是一個函數,不過是函數的函數,目的是增加函數的功能。例如先定義一個輸出目前時間的函數,再定義一個規定時間格式的函數,把後一個函數作用在前一個函數上,就是一個裝飾器,作用是用特定格式輸出當前時間。
>Numba的優點
1.簡單,往往只要1行程式碼就有驚喜;
2.對循環(loop)有奇效,而往往在科學計算中限制python速度的就是loop;
3.相容常用的科學計算包,如numpy、cmath等;
4.可以創建ufunc;
5.會自動調整精度,確保準確性。
如何使用numba
針對上述的numba的優勢,我來進行逐一介紹。先導入numba
import numba as nb
只用1行程式碼即可加速,對loop有奇效
因為numba內建的函數本身就是裝飾器,所以只要在自己定義好的函數前面加個@nb.jit()就行,簡單上手。以下以一個求和函數為例
# 用numba加速的求和函数@nb.jit()def nb_sum(a): Sum = 0 for i in range(len(a)): Sum += a[i] return Sum# 没用numba加速的求和函数def py_sum(a): Sum = 0 for i in range(len(a)): Sum += a[i] return Sum
來測試一下速度
import numpy as np a = np.linspace(0,100,100) # 创建一个长度为100的数组 %timeit np.sum(a) # numpy自带的求和函数 %timeit sum(a) # python自带的求和函数 %timeit nb_sum(a) # numba加速的求和函数 %timeit py_sum(a) # 没加速的求和函数
更多Python相關技術文章,請造訪Python教學欄位進行學習!
以上是python如何提高運行速度的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

HadiDB:輕量級、高水平可擴展的Python數據庫HadiDB(hadidb)是一個用Python編寫的輕量級數據庫,具備高度水平的可擴展性。安裝HadiDB使用pip安裝:pipinstallhadidb用戶管理創建用戶:createuser()方法創建一個新用戶。 authentication()方法驗證用戶身份。 fromhadidb.operationimportuseruser_obj=user("admin","admin")user_obj.

直接通過 Navicat 查看 MongoDB 密碼是不可能的,因為它以哈希值形式存儲。取回丟失密碼的方法:1. 重置密碼;2. 檢查配置文件(可能包含哈希值);3. 檢查代碼(可能硬編碼密碼)。

2小時內可以學會Python的基本編程概念和技能。 1.學習變量和數據類型,2.掌握控制流(條件語句和循環),3.理解函數的定義和使用,4.通過簡單示例和代碼片段快速上手Python編程。

Python在web開發、數據科學、機器學習、自動化和腳本編寫等領域有廣泛應用。 1)在web開發中,Django和Flask框架簡化了開發過程。 2)數據科學和機器學習領域,NumPy、Pandas、Scikit-learn和TensorFlow庫提供了強大支持。 3)自動化和腳本編寫方面,Python適用於自動化測試和系統管理等任務。

MySQL數據庫性能優化指南在資源密集型應用中,MySQL數據庫扮演著至關重要的角色,負責管理海量事務。然而,隨著應用規模的擴大,數據庫性能瓶頸往往成為製約因素。本文將探討一系列行之有效的MySQL性能優化策略,確保您的應用在高負載下依然保持高效響應。我們將結合實際案例,深入講解索引、查詢優化、數據庫設計以及緩存等關鍵技術。 1.數據庫架構設計優化合理的數據庫架構是MySQL性能優化的基石。以下是一些核心原則:選擇合適的數據類型選擇最小的、符合需求的數據類型,既能節省存儲空間,又能提升數據處理速度

作為數據專業人員,您需要處理來自各種來源的大量數據。這可能會給數據管理和分析帶來挑戰。幸運的是,兩項 AWS 服務可以提供幫助:AWS Glue 和 Amazon Athena。

啟動 Redis 服務器的步驟包括:根據操作系統安裝 Redis。通過 redis-server(Linux/macOS)或 redis-server.exe(Windows)啟動 Redis 服務。使用 redis-cli ping(Linux/macOS)或 redis-cli.exe ping(Windows)命令檢查服務狀態。使用 Redis 客戶端,如 redis-cli、Python 或 Node.js,訪問服務器。

要從 Redis 讀取隊列,需要獲取隊列名稱、使用 LPOP 命令讀取元素,並處理空隊列。具體步驟如下:獲取隊列名稱:以 "queue:" 前綴命名,如 "queue:my-queue"。使用 LPOP 命令:從隊列頭部彈出元素並返回其值,如 LPOP queue:my-queue。處理空隊列:如果隊列為空,LPOP 返回 nil,可先檢查隊列是否存在再讀取元素。
