首頁 後端開發 Python教學 python如何辨識驗證碼

python如何辨識驗證碼

Jun 17, 2019 pm 04:09 PM
python

在python爬蟲爬取某些網站的驗證碼的時候可能會遇到驗證碼識別的問題,現在的驗證碼大多分為四類:1、計算驗證碼2、滑塊驗證碼3、識圖驗證碼4、語音驗證碼

python如何辨識驗證碼

這裡主要是辨識驗證碼,辨識的是簡單的驗證碼,要讓辨識率更高,辨識的更準確就需要花很多的精力去訓練自己的字體庫。

辨識驗證碼通常是這幾個步驟:

1、灰階處理

#2、二值化

3、移除邊框(如果有的話)

4、降噪

5、切割字元或傾斜度矯正

6、訓練字體庫

7、辨識

這6個步驟中前三個步驟是基本的,4或者5可根據實際情況選擇是否需要,並不一定切割驗證碼,識別率就會上升很多有時候還會下降

用到的幾個主要的python庫: Pillow(python映像處理庫)、OpenCV(高級影像處理庫)、pytesseract(識別庫)

下一個案例使用方法:

1、將要辨識的驗證碼圖片放入與腳本同級的img資料夾中,建立out_img資料夾

2、python3 filename

#3、二值化、降噪等各個階段的圖片將儲存在out_img資料夾中,最終識別結果會列印到螢幕上

完整的二維碼識別代碼:

from PIL import Image
from pytesseract import *
from fnmatch import fnmatch
from queue import Queue
import matplotlib.pyplot as plt
import cv2
import time
import os
def clear_border(img,img_name):
  '''去除边框
  '''
  filename = './out_img/' + img_name.split('.')[0] + '-clearBorder.jpg'
  h, w = img.shape[:2]
  for y in range(0, w):
    for x in range(0, h):
      # if y ==0 or y == w -1 or y == w - 2:
      if y < 4 or y > w -4:
        img[x, y] = 255
      # if x == 0 or x == h - 1 or x == h - 2:
      if x < 4 or x > h - 4:
        img[x, y] = 255
  cv2.imwrite(filename,img)
  return img
def interference_line(img, img_name):
  &#39;&#39;&#39;
  干扰线降噪
  &#39;&#39;&#39;
  filename =  &#39;./out_img/&#39; + img_name.split(&#39;.&#39;)[0] + &#39;-interferenceline.jpg&#39;
  h, w = img.shape[:2]
  # !!!opencv矩阵点是反的
  # img[1,2] 1:图片的高度,2:图片的宽度
  for y in range(1, w - 1):
    for x in range(1, h - 1):
      count = 0
      if img[x, y - 1] > 245:
        count = count + 1
      if img[x, y + 1] > 245:
        count = count + 1
      if img[x - 1, y] > 245:
        count = count + 1
      if img[x + 1, y] > 245:
        count = count + 1
      if count > 2:
        img[x, y] = 255
  cv2.imwrite(filename,img)
  return img
def interference_point(img,img_name, x = 0, y = 0):
    """点降噪
    9邻域框,以当前点为中心的田字框,黑点个数
    :param x:
    :param y:
    :return:
    """
    filename =  &#39;./out_img/&#39; + img_name.split(&#39;.&#39;)[0] + &#39;-interferencePoint.jpg&#39;
    # todo 判断图片的长宽度下限
    cur_pixel = img[x,y]# 当前像素点的值
    height,width = img.shape[:2]
    for y in range(0, width - 1):
      for x in range(0, height - 1):
        if y == 0:  # 第一行
            if x == 0:  # 左上顶点,4邻域
                # 中心点旁边3个点
                sum = int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x + 1, y]) \
                      + int(img[x + 1, y + 1])
                if sum <= 2 * 245:
                  img[x, y] = 0
            elif x == height - 1:  # 右上顶点
                sum = int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x - 1, y]) \
                      + int(img[x - 1, y + 1])
                if sum <= 2 * 245:
                  img[x, y] = 0
            else:  # 最上非顶点,6邻域
                sum = int(img[x - 1, y]) \
                      + int(img[x - 1, y + 1]) \
                      + int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x + 1, y]) \
                      + int(img[x + 1, y + 1])
                if sum <= 3 * 245:
                  img[x, y] = 0
        elif y == width - 1:  # 最下面一行
            if x == 0:  # 左下顶点
                # 中心点旁边3个点
                sum = int(cur_pixel) \
                      + int(img[x + 1, y]) \
                      + int(img[x + 1, y - 1]) \
                      + int(img[x, y - 1])
                if sum <= 2 * 245:
                  img[x, y] = 0
            elif x == height - 1:  # 右下顶点
                sum = int(cur_pixel) \
                      + int(img[x, y - 1]) \
                      + int(img[x - 1, y]) \
                      + int(img[x - 1, y - 1])
                if sum <= 2 * 245:
                  img[x, y] = 0
            else:  # 最下非顶点,6邻域
                sum = int(cur_pixel) \
                      + int(img[x - 1, y]) \
                      + int(img[x + 1, y]) \
                      + int(img[x, y - 1]) \
                      + int(img[x - 1, y - 1]) \
                      + int(img[x + 1, y - 1])
                if sum <= 3 * 245:
                  img[x, y] = 0
        else:  # y不在边界
            if x == 0:  # 左边非顶点
                sum = int(img[x, y - 1]) \
                      + int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x + 1, y - 1]) \
                      + int(img[x + 1, y]) \
                      + int(img[x + 1, y + 1])
                if sum <= 3 * 245:
                  img[x, y] = 0
            elif x == height - 1:  # 右边非顶点
                sum = int(img[x, y - 1]) \
                      + int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x - 1, y - 1]) \
                      + int(img[x - 1, y]) \
                      + int(img[x - 1, y + 1])
                if sum <= 3 * 245:
                  img[x, y] = 0
            else:  # 具备9领域条件的
                sum = int(img[x - 1, y - 1]) \
                      + int(img[x - 1, y]) \
                      + int(img[x - 1, y + 1]) \
                      + int(img[x, y - 1]) \
                      + int(cur_pixel) \
                      + int(img[x, y + 1]) \
                      + int(img[x + 1, y - 1]) \
                      + int(img[x + 1, y]) \
                      + int(img[x + 1, y + 1])
                if sum <= 4 * 245:
                  img[x, y] = 0
    cv2.imwrite(filename,img)
    return img
def _get_dynamic_binary_image(filedir, img_name):
  &#39;&#39;&#39;
  自适应阀值二值化
  &#39;&#39;&#39;
  filename =   &#39;./out_img/&#39; + img_name.split(&#39;.&#39;)[0] + &#39;-binary.jpg&#39;
  img_name = filedir + &#39;/&#39; + img_name
  print(&#39;.....&#39; + img_name)
  im = cv2.imread(img_name)
  im = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
  th1 = cv2.adaptiveThreshold(im, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 21, 1)
  cv2.imwrite(filename,th1)
  return th1
def _get_static_binary_image(img, threshold = 140):
  &#39;&#39;&#39;
  手动二值化
  &#39;&#39;&#39;
  img = Image.open(img)
  img = img.convert(&#39;L&#39;)
  pixdata = img.load()
  w, h = img.size
  for y in range(h):
    for x in range(w):
      if pixdata[x, y] < threshold:
        pixdata[x, y] = 0
      else:
        pixdata[x, y] = 255
  return img
def cfs(im,x_fd,y_fd):
  &#39;&#39;&#39;用队列和集合记录遍历过的像素坐标代替单纯递归以解决cfs访问过深问题
  &#39;&#39;&#39;
  # print(&#39;**********&#39;)
  xaxis=[]
  yaxis=[]
  visited =set()
  q = Queue()
  q.put((x_fd, y_fd))
  visited.add((x_fd, y_fd))
  offsets=[(1, 0), (0, 1), (-1, 0), (0, -1)]#四邻域
  while not q.empty():
      x,y=q.get()
      for xoffset,yoffset in offsets:
          x_neighbor,y_neighbor = x+xoffset,y+yoffset
          if (x_neighbor,y_neighbor) in (visited):
              continue  # 已经访问过了
          visited.add((x_neighbor, y_neighbor))
          try:
              if im[x_neighbor, y_neighbor] == 0:
                  xaxis.append(x_neighbor)
                  yaxis.append(y_neighbor)
                  q.put((x_neighbor,y_neighbor))
          except IndexError:
              pass
  # print(xaxis)
  if (len(xaxis) == 0 | len(yaxis) == 0):
    xmax = x_fd + 1
    xmin = x_fd
    ymax = y_fd + 1
    ymin = y_fd
  else:
    xmax = max(xaxis)
    xmin = min(xaxis)
    ymax = max(yaxis)
    ymin = min(yaxis)
    #ymin,ymax=sort(yaxis)
  return ymax,ymin,xmax,xmin
def detectFgPix(im,xmax):
  &#39;&#39;&#39;搜索区块起点
  &#39;&#39;&#39;
  h,w = im.shape[:2]
  for y_fd in range(xmax+1,w):
      for x_fd in range(h):
          if im[x_fd,y_fd] == 0:
              return x_fd,y_fd
def CFS(im):
  &#39;&#39;&#39;切割字符位置
  &#39;&#39;&#39;
  zoneL=[]#各区块长度L列表
  zoneWB=[]#各区块的X轴[起始,终点]列表
  zoneHB=[]#各区块的Y轴[起始,终点]列表
  xmax=0#上一区块结束黑点横坐标,这里是初始化
  for i in range(10):
      try:
          x_fd,y_fd = detectFgPix(im,xmax)
          # print(y_fd,x_fd)
          xmax,xmin,ymax,ymin=cfs(im,x_fd,y_fd)
          L = xmax - xmin
          H = ymax - ymin
          zoneL.append(L)
          zoneWB.append([xmin,xmax])
          zoneHB.append([ymin,ymax])
      except TypeError:
          return zoneL,zoneWB,zoneHB
  return zoneL,zoneWB,zoneHB
def cutting_img(im,im_position,img,xoffset = 1,yoffset = 1):
  filename =  &#39;./out_img/&#39; + img.split(&#39;.&#39;)[0]
  # 识别出的字符个数
  im_number = len(im_position[1])
  # 切割字符
  for i in range(im_number):
    im_start_X = im_position[1][i][0] - xoffset
    im_end_X = im_position[1][i][1] + xoffset
    im_start_Y = im_position[2][i][0] - yoffset
    im_end_Y = im_position[2][i][1] + yoffset
    cropped = im[im_start_Y:im_end_Y, im_start_X:im_end_X]
    cv2.imwrite(filename + &#39;-cutting-&#39; + str(i) + &#39;.jpg&#39;,cropped)
def main():
  filedir = &#39;./easy_img&#39;
  for file in os.listdir(filedir):
    if fnmatch(file, &#39;*.jpeg&#39;):
      img_name = file
      # 自适应阈值二值化
      im = _get_dynamic_binary_image(filedir, img_name)
      # 去除边框
      im = clear_border(im,img_name)
      # 对图片进行干扰线降噪
      im = interference_line(im,img_name)
      # 对图片进行点降噪
      im = interference_point(im,img_name)
      # 切割的位置
      im_position = CFS(im)
      maxL = max(im_position[0])
      minL = min(im_position[0])
      # 如果有粘连字符,如果一个字符的长度过长就认为是粘连字符,并从中间进行切割
      if(maxL > minL + minL * 0.7):
        maxL_index = im_position[0].index(maxL)
        minL_index = im_position[0].index(minL)
        # 设置字符的宽度
        im_position[0][maxL_index] = maxL // 2
        im_position[0].insert(maxL_index + 1, maxL // 2)
        # 设置字符X轴[起始,终点]位置
        im_position[1][maxL_index][1] = im_position[1][maxL_index][0] + maxL // 2
        im_position[1].insert(maxL_index + 1, [im_position[1][maxL_index][1] + 1, im_position[1][maxL_index][1] + 1 + maxL // 2])
        # 设置字符的Y轴[起始,终点]位置
        im_position[2].insert(maxL_index + 1, im_position[2][maxL_index])
      # 切割字符,要想切得好就得配置参数,通常 1 or 2 就可以
      cutting_img(im,im_position,img_name,1,1)
      # 识别验证码
      cutting_img_num = 0
      for file in os.listdir(&#39;./out_img&#39;):
        str_img = &#39;&#39;
        if fnmatch(file, &#39;%s-cutting-*.jpg&#39; % img_name.split(&#39;.&#39;)[0]):
          cutting_img_num += 1
      for i in range(cutting_img_num):
        try:
          file = &#39;./out_img/%s-cutting-%s.jpg&#39; % (img_name.split(&#39;.&#39;)[0], i)
          # 识别验证码
          str_img = str_img + image_to_string(Image.open(file),lang = &#39;eng&#39;, config=&#39;-psm 10&#39;) #单个字符是10,一行文本是7
        except Exception as err:
          pass
      print(&#39;切图:%s&#39; % cutting_img_num)
      print(&#39;识别为:%s&#39; % str_img)
if __name__ == &#39;__main__&#39;:
  main()
登入後複製

以上是python如何辨識驗證碼的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

See all articles