python人工智慧需要學什麼
有不少同學學習 Python 的原因是對人工智慧感興趣,有志從事相關行業。今天我們來聊聊這個方向所需要的一些技能。
這裡我們主要談論的是程式設計技能。 (推薦學習:Python影片教學)
如果你打算採用Python 作為主要開發語言(這也是目前人工智慧領域的主流),那麼Python 的開發基礎是必須得掌握的,這是一切基於Python 開發的根基。你得對Python 的基本語法、資料類型、常見模組有所了解,能正確使用條件、循環等邏輯,掌握list、dict 等資料結構及其常用操作,了解函數、模組、物件導向的概念和使用等等。
在對此已經熟練之後,你需要學習資料處理相關的Python 工具庫:
NumPy
NumPy 提供了許多數學計算的資料結構和方法,比Python 自身的list 效率高很多。它提供的 ndarray 大大簡化了矩陣運算。
Pandas
基於 NumPy 實作的資料處理工具。提供了大量資料統計、分析方面的模型和方法。一維的 Series,二維的 DataFrame 和三維的 Panel 是其主要的資料結構。
SciPy
進行科學計算的Python 工具包,提供了微積分、線性代數、訊號處理、傅立葉變換、曲線擬合等眾多方法。
Matplotlib
Python 最基礎的繪圖工具。功能豐富,客製化性強,幾乎可滿足日常各類繪圖需求,但配置較複雜。
只要你用 Python 和資料打交道,就繞不開以上這幾個函式庫,所以務必學習一下。
而在此之後,你就需要依照自己的具體方向,選擇更專業的工具包來進行研究和應用。
Python 在人工智慧方面最有名的工具庫主要有:
Scikit-Learn
Scikit-Learn 是用Python 開發的機器學習庫,其中包含大量機器學習演算法、資料集,是資料探勘方便的工具。它基於 NumPy、SciPy 和 Matplotlib,可直接透過 pip 安裝。
TensorFlow
TensorFlow 最初由 Google 開發,用於機器學習的研究。 TensorFlow 可以在 GPU 或 CPU 上運行,在深度學習領域表現優異。目前無論是在學術研究或工程應用中都被廣泛使用。但 TensorFlow 相對來說更底層,更多時候我們會使用基於它開發的其他框架。
Theano
Theano 是一個成熟且穩定的深度學習庫。與 TensorFlow 類似,它是一個比較底層的函式庫,適合數值運算最佳化,支援 GPU 程式設計。有許多基於 Theano 的函式庫都在利用其資料結構,但對於開發來說,它的介面並不是很友善。
Keras
Keras 是一個高度模組化的神經網路函式庫,用 Python 編寫,能夠在 TensorFlow 或 Theano 上運作。它的介面非常簡單易用,大大提升了開發效率。
Caffe
Caffe 在深度學習領域名氣很大。它由伯克利視覺和學習中心(BVLC)和社區貢獻者開發,具有模組化、高性能的優點,尤其在電腦視覺領域有極大的優勢。 Caffe 本身並不是一個 Python 函式庫,但它提供了 Python 的介面。
PyTorch
Torch 也是一個老牌機器學習庫。 Facebook 人工智慧研究所用的框架是 Torch,DeepMind 在被Google收購之前用的也是 Torch(後轉為 TensorFlow),足見其能力。但因 Lua 語言導致其不夠大眾。直到它的 Python 實作版本 PyTorch 的出現。
MXNet
亞馬遜 AWS 的預設深度學習引擎,分散式運算是它的特色之一,支援多個 CPU/GPU 訓練網路。
借助這些強大的工具,你已經可以使用各種經典的模型,對資料集進行訓練和預測。但想成為一名合格的人工智慧開發者,僅僅會呼叫工具的 API 和調參數是遠遠不夠的。
Python 是人工智慧開發的重要工具,程式設計是此方向的必備技能。但並不是掌握 Python 就掌握了人工智慧。 人工智慧的核心是機器學習(Machine Learning)和深度學習。而它們的基礎是數學(高等數學/線性代數/機率論等),程式設計是實現手段。
所以你想要進入這個領域,除了程式設計技能外,數學基礎必不可少,然後還要去了解資料探勘、機器學習、深度學習等知識。
這不是一條幾個月就能速成的路,但堅持下去一定會有所收穫。
更多Python相關技術文章,請造訪Python教學欄位學習!
以上是python人工智慧需要學什麼的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

Golang在性能和可擴展性方面優於Python。 1)Golang的編譯型特性和高效並發模型使其在高並發場景下表現出色。 2)Python作為解釋型語言,執行速度較慢,但通過工具如Cython可優化性能。

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。
