首頁 後端開發 Python教學 python數據分析用什麼軟體

python數據分析用什麼軟體

Jul 05, 2019 am 10:09 AM
python

Python是資料處理常用工具,可以處理數量級從幾K至幾T不等的數據,具有較高的開發效率和可維護性,還具有較強的通用性和跨平台性,這裡就為大家分享幾個不錯的數據分析工具。

python數據分析用什麼軟體

Python資料分析需要安裝的第三方擴充功能庫有:Numpy、Pandas、SciPy、Matplotlib、Scikit-Learn、Keras、Gensim、Scrapy等,以下是第三方擴充庫的簡要介紹:(推薦學習:Python影片教學

#1. Pandas

Pandas是Python強大、靈活的資料分析和探索工具,包含Series、DataFrame等高階資料結構和工具,安裝Pandas可讓Python中處理資料非常快速且簡單。

Pandas是Python的一個資料分析包,Pandas最初被用作金融資料分析工具而開發出來,因此Pandas為時間序列分析提供了很好的支援。

Pandas是為了解決資料分析任務而創建的,Pandas納入了大量的函式庫和一些標準的資料模型,提供了高效的操作大型資料集所需的工具。 Pandas提供了大量是我們快速且方便的處理資料的函數和方法。 Pandas包含了高階資料結構,以及讓資料分析變得快速、簡單的工具。它建立在Numpy之上,使得Numpy應用變得簡單。

帶有座標軸的資料結構,支援自動或明確的資料對齊。這能防止由於資料結構沒有對齊,以及處理不同來源、採用不同索引的資料而產生的常見錯誤。

使用Pandas更容易處理遺失資料。
合併流行資料庫(如:基於SQL的資料庫)
Pandas是進行資料清晰/整理的最佳工具。

2. Numpy

Python沒有提供陣列功能,Numpy可以提供陣列支援以及對應的高效處理函數,是Python資料分析的基礎,也是SciPy、Pandas等資料處理和科學計算庫最基本的函數功能庫,且其資料類型對Python資料分析十分有用。

Numpy提供了兩種基本的物件:ndarray和ufunc。 ndarray是儲存單一資料類型的多維數組,而ufunc是能夠對數組進行處理的函數。 Numpy的功能:

N維數組,一個快速、有效率地使用記憶體的多維數組,他提供向量化數學運算。可以不需要使用循環,就能對整個陣列內的資料進行標準數學運算。非常便於傳送資料到用低階語言編寫(C\C )的外部函式庫,也便於外部函式庫以Numpy數組形式傳回資料。

Numpy不提供進階資料分析功能,但可以更加深刻的理解Numpy陣列和以陣列為導向的計算。

3. Matplotlib

Matplotlib是強大的資料視覺化工具和作圖庫,是主要用於繪製資料圖表的Python庫,提供了繪製各類別視覺化圖形的命令字庫、簡單的接口,可以方便使用者輕鬆掌握圖形的格式,繪製各類視覺化圖形。

Matplotlib是Python的一個視覺化模組,他能方便的只做線條圖、圓餅圖、長條圖以及其他專業圖形。 
使用Matplotlib,可以自訂所做圖表的任一方面。他支援所有作業系統下不同的GUI後端,並且可以將圖形輸出為常見的向量圖和圖形測試,如PDF SVG JPG PNG BMP GIF.透過資料繪圖,我們可以將枯燥的數字轉化成人們容易接收的圖表。 
Matplotlib是基於Numpy的一套Python包,這個套件提供了命令的資料繪圖工具,主要用於繪製一些統計圖形。
Matplotlib有一套允許自訂各種屬性的預設設置,可以控制Matplotlib中的每一個預設屬性:圖像大小、每英吋點數、線寬、色彩和樣式、子圖、座標軸、網個屬性、文字和文字屬性。

4. SciPy

SciPy是一組專門解決科學計算中各種標準問題域的套件的集合,包含的功能有最優化、線性代數、積分、內插法、擬合、特殊函數、快速傅立葉變換、訊號處理和影像處理、常微分方程求解和其他科學與工程中常用的計算等,這些對資料分析和挖掘十分有用。

Scipy是一款方便、易於使用、專為科學和工程設計的Python包,它包括統計、最佳化、整合、線性代數模組、傅立葉變換、訊號與影像處理、常微分方程求解器等。 Scipy依賴Numpy,並提供許多對使用者友好的和有效的數值例程,如數值積分和最佳化。

Python有著像Matlab一樣強大的數值計算工具包Numpy;有著繪圖工具包Matplotlib;有著科學計算工具包Scipy。 
Python能直接處理數據,而Pandas幾乎可以像SQL一樣對資料進行控制。 Matplotlib能夠對資料和記過進行視覺化,快速理解資料。 Scikit-Learn提供了機器學習演算法的支持,Theano提供了升讀學習框架(也可以使用CPU加速)。

5. Keras

Keras是深度學習庫,人工神經網路和深度學習模型,基於Theano之上,依賴Numpy和Scipy,利用它可以建立普通的神經網路和各種深度學習模型,如語言處理、影像辨識、自編碼器、循環神經網路、遞歸審計網路、卷積神經網路等。

6. Scikit-Learn

Scikit-Learn是Python常用的機器學習工具包,提供了完善的機器學習工具箱,支援資料預處理、分類、回歸、聚類、預測和模型分析等強大機器學習庫,其依賴Numpy、Scipy和Matplotlib等。

Scikit-Learn是基於Python機器學習的模組,基於BSD開源授權。 
Scikit-Learn的安裝需要Numpy Scopy Matplotlib等模組,Scikit-Learn的主要功能分為六個部分,分類、回歸、聚類、資料降維、模型選擇、資料預處理。

Scikit-Learn自帶一些經典的資料集,例如用於分類的iris和digits資料集,還有用於迴歸分析的boston house prices資料集。此資料集是一種字典結構,資料儲存在.data成員中,輸出標籤儲存在.target成員中。 Scikit-Learn建立在Scipy之上,提供了一套常用的機器學習演算法,透過一個統一的介面來使用,Scikit-Learn有助於在資料集上實現流行的演算法。 
Scikit-Learn還有一些函式庫,例如:用於自然語言處理的Nltk、用於網站資料抓取的Scrappy、網路挖掘的Pattern、深度學習的Theano等。

7. Scrapy

Scrapy是專為爬蟲而生的工具,具有URL讀取、HTML解析、儲存資料等功能,可以使用Twisted非同步網路庫來處理網路通訊,架構清晰,且包含了各種中間件接口,可以靈活的完成各種需求。

8. Gensim

Gensim是用來做文字主題模型的函式庫,常用於處理語言方面的任務,支援TF-IDF、LSA、LDA和Word2Vec在內的多種主題模型演算法,支援串流訓練,並提供了諸如相似度計算、資訊檢索等一些常用任務的API介面。

更多Python相關技術文章,請造訪Python教學欄位學習!

以上是python數據分析用什麼軟體的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:代碼示例和比較 PHP和Python:代碼示例和比較 Apr 15, 2025 am 12:07 AM

PHP和Python各有優劣,選擇取決於項目需求和個人偏好。 1.PHP適合快速開發和維護大型Web應用。 2.Python在數據科學和機器學習領域佔據主導地位。

CentOS上如何進行PyTorch模型訓練 CentOS上如何進行PyTorch模型訓練 Apr 14, 2025 pm 03:03 PM

在CentOS系統上高效訓練PyTorch模型,需要分步驟進行,本文將提供詳細指南。一、環境準備:Python及依賴項安裝:CentOS系統通常預裝Python,但版本可能較舊。建議使用yum或dnf安裝Python3併升級pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。 CUDA與cuDNN(GPU加速):如果使用NVIDIAGPU,需安裝CUDATool

docker原理詳解 docker原理詳解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux內核特性,提供高效、隔離的應用運行環境。其工作原理如下:1. 鏡像作為只讀模板,包含運行應用所需的一切;2. 聯合文件系統(UnionFS)層疊多個文件系統,只存儲差異部分,節省空間並加快速度;3. 守護進程管理鏡像和容器,客戶端用於交互;4. Namespaces和cgroups實現容器隔離和資源限制;5. 多種網絡模式支持容器互聯。理解這些核心概念,才能更好地利用Docker。

CentOS上PyTorch的GPU支持情況如何 CentOS上PyTorch的GPU支持情況如何 Apr 14, 2025 pm 06:48 PM

在CentOS系統上啟用PyTorchGPU加速,需要安裝CUDA、cuDNN以及PyTorch的GPU版本。以下步驟將引導您完成這一過程:CUDA和cuDNN安裝確定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA顯卡支持的CUDA版本。例如,您的MX450顯卡可能支持CUDA11.1或更高版本。下載並安裝CUDAToolkit:訪問NVIDIACUDAToolkit官網,根據您顯卡支持的最高CUDA版本下載並安裝相應的版本。安裝cuDNN庫:前

Python vs. JavaScript:社區,圖書館和資源 Python vs. JavaScript:社區,圖書館和資源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社區、庫和資源方面的對比各有優劣。 1)Python社區友好,適合初學者,但前端開發資源不如JavaScript豐富。 2)Python在數據科學和機器學習庫方面強大,JavaScript則在前端開發庫和框架上更勝一籌。 3)兩者的學習資源都豐富,但Python適合從官方文檔開始,JavaScript則以MDNWebDocs為佳。選擇應基於項目需求和個人興趣。

CentOS下PyTorch版本怎麼選 CentOS下PyTorch版本怎麼選 Apr 14, 2025 pm 02:51 PM

在CentOS下選擇PyTorch版本時,需要考慮以下幾個關鍵因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU並且希望利用GPU加速,需要選擇支持相應CUDA版本的PyTorch。可以通過運行nvidia-smi命令查看你的顯卡支持的CUDA版本。 CPU版本:如果沒有GPU或不想使用GPU,可以選擇CPU版本的PyTorch。 2.Python版本PyTorch

minio安裝centos兼容性 minio安裝centos兼容性 Apr 14, 2025 pm 05:45 PM

MinIO對象存儲:CentOS系統下的高性能部署MinIO是一款基於Go語言開發的高性能、分佈式對象存儲系統,與AmazonS3兼容。它支持多種客戶端語言,包括Java、Python、JavaScript和Go。本文將簡要介紹MinIO在CentOS系統上的安裝和兼容性。 CentOS版本兼容性MinIO已在多個CentOS版本上得到驗證,包括但不限於:CentOS7.9:提供完整的安裝指南,涵蓋集群配置、環境準備、配置文件設置、磁盤分區以及MinI

centos如何安裝nginx centos如何安裝nginx Apr 14, 2025 pm 08:06 PM

CentOS 安裝 Nginx 需要遵循以下步驟:安裝依賴包,如開發工具、pcre-devel 和 openssl-devel。下載 Nginx 源碼包,解壓後編譯安裝,並指定安裝路徑為 /usr/local/nginx。創建 Nginx 用戶和用戶組,並設置權限。修改配置文件 nginx.conf,配置監聽端口和域名/IP 地址。啟動 Nginx 服務。需要注意常見的錯誤,如依賴問題、端口衝突和配置文件錯誤。性能優化需要根據具體情況調整,如開啟緩存和調整 worker 進程數量。

See all articles