首頁 Java java教程 Java HashMap透析

Java HashMap透析

Oct 28, 2019 pm 03:35 PM
java

Java HashMap透析

HashMap 是數組和鍊錶組合組成的複雜結構,哈希值決定了鍵值在數組的位置,當哈希值相同時則以鍊錶形式存儲,當鍊錶長度到達設定的閾值則會對其進行樹化,這樣做是為了確保資料安全和資料相關操作的效率

HashMap 效能表現取決於雜湊碼的有效性,所以hashCode 和equals 的基本約定規則特別重要,如:equals 相等,hashCode 一定要相等;重寫了hashCode 也要重寫equals;hashCode 需要保持一致性,狀態改變回傳的雜湊值仍然要一致;equals 的對稱、反射、傳遞等特性

Java HashMap透析

HashMap 與Hashtable、TreeMap 的差異

HashMap:基於陣列的非同步雜湊表,支援null 鍵或值,是鍵值對存取資料場景的首選

Hashtable:基於數組的同步雜湊表,不支援null鍵或值,因為同步導致效能影響,很少被使用

TreeMap:基於紅黑樹提供順序存取的Map,比HashMap 節省空間,但它的資料操作(查、增、刪)時間複雜度均為:O(log(n)),這點與HashMap 不同。支援空值,當鍵為空時且未實現Comparator 接口,會出現NullPointerException ,實現了Comparator 接口並對null 對象進行判斷可實現正常存入

HashMap、Hashtable、TreeMap 均以鍵值對形式儲存或操作資料元素。 HashMap、TreeMap 繼承自AbstractMap 類,Hashtable 繼承自Dictionary 類,三者皆實作Map 介面

HashMap 原始碼解析

#HashMap()

public HashMap(int initialCapacity, float loadFactor){  
    // ... 
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}
登入後複製

初始化HashMap 時只設定了一些初始值,但在開始處理資料時,如 .put() 方法內漸漸開始複雜起來

HashMap.put()

    public V put(K key, V value) {
        return putVal(hash(key), key, value, false, true);
    }

    final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
    	// 定义新tab数组及node对象
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        // 如果原table是空的或者未存储任何元素则需要先初始化进行tab的初始化
        if ((tab = table) == null || (n = tab.length) == 0)
            n = (tab = resize()).length;
        // 当数组中对应位置为null时,将新元素放入数组中
        if ((p = tab[i = (n - 1) & hash]) == null)
            tab[i] = newNode(hash, key, value, null);
        // 若对应位置不为空时处理哈希冲突
        else {
            Node<K,V> e; K k;
            // 1 - 普通元素判断: 更新数组中对应位置数据
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // 2 - 红黑树判断:当p为树的节点时,向树内插入节点
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            // 3 - 链表判断:插入节点
            else {
                for (int binCount = 0; ; ++binCount) {
                	// 找到尾结点并插入
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        // 判断链表长度是否达到树化阈值,达到就对链表进行树化
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    // 更新链表中对应位置数据
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    p = e;
                }
            }
            // 如果存在这个映射就覆盖
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                // 判断是否允许覆盖,并且value是否为空
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                // 回调以允许LinkedHashMap后置操作
                afterNodeAccess(e); 
                return oldValue;
            }
        }
        // 更新修改次数
        ++modCount;
        // 检查数组是否需要进行扩容
        if (++size > threshold)
            resize();
        // 回调以允许LinkedHashMap后置操作
        afterNodeInsertion(evict);
        return null;
    }
登入後複製

當table 為null,會透過 resize() 初始化,且 resize() 有兩個作用,一是創建並初始化table ,二是在table 容量不滿足需求時進行擴容:

        if (++size > threshold)
            resize();
登入後複製

具體的鍵值對儲存位置計算方法為:

        if ((p = tab[i = (n - 1) & hash]) == null)
            // 向数组赋值新元素
            tab[i] = newNode(hash, key, value, null);
        else {
            Node<K,V> e; K k;
            // 如果新插入的结点和table中p结点的hash值,key值相同的话
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;
            // 如果是红黑树结点的话,进行红黑树插入
            else if (p instanceof TreeNode)
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    // 代表这个单链表只有一个头部结点,则直接新建一个结点即可
                    if ((e = p.next) == null) {
                        p.next = newNode(hash, key, value, null);
                        // 链表长度大于8时,将链表转红黑树
                        if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;
                    // 及时更新p
                    p = e;
                }
            }
            // 如果存在这个映射就覆盖
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                // 判断是否允许覆盖,并且value是否为空
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);     // 回调以允许LinkedHashMap后置操作
                return oldValue;
            }
        }
登入後複製

留意.put() 方法中的hash 計算,它並不是key 的hashCode ,而是將key 的hashCode 高位資料移位到低位進行異或運算,這樣一些計算出來的哈希值主要差異在高位時的數據,就不會因HashMap 裡哈希尋址時被忽略容量以上的高位,那麼即可有效避免此類情況下的哈希碰撞

    static final int hash(Object key) {
        int h;
        return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
    }
登入後複製

HashMap.resize()

    final Node<K,V>[] resize() {
    	// 把当前底层数组赋值给oldTab,为数据迁移工作做准备
        Node<K,V>[] oldTab = table;
        // 获取当前数组的大小,等于或小于0表示需要初始化数组,大于0表示需要扩容数组
        int oldCap = (oldTab == null) ? 0 : oldTab.length;
        // 获取扩容的阈值(容量*负载系数)
        int oldThr = threshold;
        // 定义并初始化新数组长度和目标阈值
        int newCap, newThr = 0;
        // 判断是初始化数组还是扩容,等于或小于0表示需要初始化数组,大于0表示需要扩容数组。若  if(oldCap > 0)=true 表示需扩容而非初始化
        if (oldCap > 0) {
        	// 判断数组长度是否已经是最大,MAXIMUM_CAPACITY =(2^30)
            if (oldCap >= MAXIMUM_CAPACITY) {
            	// 阈值设置为最大
                threshold = Integer.MAX_VALUE;
                return oldTab;
            }
            else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                     oldCap >= DEFAULT_INITIAL_CAPACITY)            	
            	// 目标阈值扩展2倍,数组长度扩展2倍
                newThr = oldThr << 1; // double threshold
        }
        // 表示需要初始化数组而不是扩容
        else if (oldThr > 0) 
        	// 说明调用的是HashMap的有参构造函数,因为无参构造函数并没有对threshold进行初始化
            newCap = oldThr;
        // 表示需要初始化数组而不是扩容,零初始阈值表示使用默认值
        else {	
        	// 说明调用的是HashMap的无参构造函数
            newCap = DEFAULT_INITIAL_CAPACITY;
            // 计算目标阈值
            newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
        }
        // 当目标阈值为0时需重新计算,公式:容量(newCap)*负载系数(loadFactor)
        if (newThr == 0) {
            float ft = (float)newCap * loadFactor;
            newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                      (int)ft : Integer.MAX_VALUE);
        }
        // 根据以上计算结果将阈值更新
        threshold = newThr;
        // 将新数组赋值给底层数组
        @SuppressWarnings({"rawtypes","unchecked"})
            Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
        table = newTab;
        
        // -------------------------------------------------------------------------------------
        // 此时已完成初始化数组或扩容数组,但原数组内的数据并未迁移至新数组(扩容后的数组),之后的代码则是完成原数组向新数组的数据迁移过程
        // -------------------------------------------------------------------------------------
        
        // 判断原数组内是否有存储数据,有的话开始迁移数据
        if (oldTab != null) {
        	// 开始循环迁移数据
            for (int j = 0; j < oldCap; ++j) {
                Node<K,V> e;
                // 将数组内此下标中的数据赋值给Node类型的变量e,并判断非空
                if ((e = oldTab[j]) != null) {
                    oldTab[j] = null;
                    // 1 - 普通元素判断:判断数组内此下标中是否只存储了一个元素,是的话表示这是一个普通元素,并开始转移
                    if (e.next == null)
                        newTab[e.hash & (newCap - 1)] = e;
                    // 2 - 红黑树判断:判断此下标内是否是一颗红黑树,是的话进行数据迁移
                    else if (e instanceof TreeNode)
                        ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
                    // 3 -  链表判断:若此下标内包含的数据既不是普通元素又不是红黑树,则它只能是一个链表,进行数据转移
                    else { // preserve order
                        Node<K,V> loHead = null, loTail = null;
                        Node<K,V> hiHead = null, hiTail = null;
                        Node<K,V> next;
                        do {
                            next = e.next;
                            if ((e.hash & oldCap) == 0) {
                                if (loTail == null)
                                    loHead = e;
                                else
                                    loTail.next = e;
                                loTail = e;
                            }
                            else {
                                if (hiTail == null)
                                    hiHead = e;
                                else
                                    hiTail.next = e;
                                hiTail = e;
                            }
                        } while ((e = next) != null);
                        if (loTail != null) {
                            loTail.next = null;
                            newTab[j] = loHead;
                        }
                        if (hiTail != null) {
                            hiTail.next = null;
                            newTab[j + oldCap] = hiHead;
                        }
                    }
                }
            }
        }
        // 返回初始化完成或扩容完成的新数组
        return newTab;
    }
登入後複製

容量和負載係數決定了陣列容量,空餘太多會造成空間浪費,使用太滿會影響操作效能

如果能夠明確知道HashMap 將要存取的鍵值對的數量,可以考慮預先設定適當的容量大小。具體數值我們可以根據擴容發生的條件來做簡單預估,根據前面的程式碼分析,我們知道它需要符合計算條件:負載因子* 容量> 元素數量

所以,預先設定的容量需要滿足,大於預估元素數量/ 負載因子,同時它是2 的冪數

但需要注意的是:

如果沒有特別需求,不要輕易進行更改,因為JDK 自身的預設負載因子是非常符合通用場景的需求的。如果確實需要調整,建議不要設定超過 0.75 的數值,因為會顯著增加衝突,降低 HashMap 的效能。如果使用太小的負載因子,按照上面的公式,預設容量值也進行調整,否則可能會導致更頻繁的擴容,增加無謂的開銷,本身存取效能也會受影響。

HashMap.get()

    public V get(Object key) {
        Node<K,V> e;
        return (e = getNode(hash(key), key)) == null ? null : e.value;
    }

    final Node<K,V> getNode(int hash, Object key) {
        Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
        // 将table赋值给变量tab并判断非空 && tab 的厂部大于0 && 通过位运算得到求模结果确定链表的首节点赋值并判断非空
        if ((tab = table) != null && (n = tab.length) > 0 &&
            (first = tab[(n - 1) & hash]) != null) {
        	// 判断首节点hash值 && 判断key的hash值(地址相同 || equals相等)均为true则表示first即为目标节点直接返回
            if (first.hash == hash && // always check first node
                ((k = first.key) == key || (key != null && key.equals(k))))
                return first;
            // 若首节点非目标节点,且还有后续节点时,则继续向后寻找
            if ((e = first.next) != null) {
            	// 1 - 树:判断此节点是否为树的节点,是的话遍历树结构查找节点,查找结果可能为null
                if (first instanceof TreeNode)
                    return ((TreeNode<K,V>)first).getTreeNode(hash, key);
                // 2 - 链表:若此节点非树节点,说明它是链表,遍历链表查找节点,查找结果可能为null
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        return e;
                } while ((e = e.next) != null);
            }
        }
        return null;
    }
登入後複製

HashMap 為什麼會被樹化

為了確保資料安全及相關操作效率

#因為在元素放置過程中,如果一個物件雜湊衝突,都被放置到同一個桶裡,則會形成一個鍊錶,我們知道鍊錶查詢是線性的,會嚴重影響存取的效能

而在現實世界,建構雜湊衝突的資料並不是非常複雜的事情,惡意程式碼就可以利用這些資料大量與伺服器端交互,導致伺服器端CPU 大量佔用,這就構成了雜湊碰撞拒絕服務攻擊,國內一線網路公司曾發生類似攻擊事件

以上是Java HashMap透析的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1664
14
CakePHP 教程
1423
52
Laravel 教程
1321
25
PHP教程
1269
29
C# 教程
1249
24
突破或從Java 8流返回? 突破或從Java 8流返回? Feb 07, 2025 pm 12:09 PM

Java 8引入了Stream API,提供了一種強大且表達力豐富的處理數據集合的方式。然而,使用Stream時,一個常見問題是:如何從forEach操作中中斷或返回? 傳統循環允許提前中斷或返回,但Stream的forEach方法並不直接支持這種方式。本文將解釋原因,並探討在Stream處理系統中實現提前終止的替代方法。 延伸閱讀: Java Stream API改進 理解Stream forEach forEach方法是一個終端操作,它對Stream中的每個元素執行一個操作。它的設計意圖是處

PHP:網絡開發的關鍵語言 PHP:網絡開發的關鍵語言 Apr 13, 2025 am 12:08 AM

PHP是一種廣泛應用於服務器端的腳本語言,特別適合web開發。 1.PHP可以嵌入HTML,處理HTTP請求和響應,支持多種數據庫。 2.PHP用於生成動態網頁內容,處理表單數據,訪問數據庫等,具有強大的社區支持和開源資源。 3.PHP是解釋型語言,執行過程包括詞法分析、語法分析、編譯和執行。 4.PHP可以與MySQL結合用於用戶註冊系統等高級應用。 5.調試PHP時,可使用error_reporting()和var_dump()等函數。 6.優化PHP代碼可通過緩存機制、優化數據庫查詢和使用內置函數。 7

PHP與Python:了解差異 PHP與Python:了解差異 Apr 11, 2025 am 12:15 AM

PHP和Python各有優勢,選擇應基於項目需求。 1.PHP適合web開發,語法簡單,執行效率高。 2.Python適用於數據科學和機器學習,語法簡潔,庫豐富。

PHP與其他語言:比較 PHP與其他語言:比較 Apr 13, 2025 am 12:19 AM

PHP適合web開發,特別是在快速開發和處理動態內容方面表現出色,但不擅長數據科學和企業級應用。與Python相比,PHP在web開發中更具優勢,但在數據科學領域不如Python;與Java相比,PHP在企業級應用中表現較差,但在web開發中更靈活;與JavaScript相比,PHP在後端開發中更簡潔,但在前端開發中不如JavaScript。

PHP與Python:核心功能 PHP與Python:核心功能 Apr 13, 2025 am 12:16 AM

PHP和Python各有優勢,適合不同場景。 1.PHP適用於web開發,提供內置web服務器和豐富函數庫。 2.Python適合數據科學和機器學習,語法簡潔且有強大標準庫。選擇時應根據項目需求決定。

PHP的影響:網絡開發及以後 PHP的影響:網絡開發及以後 Apr 18, 2025 am 12:10 AM

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

PHP:許多網站的基礎 PHP:許多網站的基礎 Apr 13, 2025 am 12:07 AM

PHP成為許多網站首選技術棧的原因包括其易用性、強大社區支持和廣泛應用。 1)易於學習和使用,適合初學者。 2)擁有龐大的開發者社區,資源豐富。 3)廣泛應用於WordPress、Drupal等平台。 4)與Web服務器緊密集成,簡化開發部署。

PHP與Python:用例和應用程序 PHP與Python:用例和應用程序 Apr 17, 2025 am 12:23 AM

PHP適用於Web開發和內容管理系統,Python適合數據科學、機器學習和自動化腳本。 1.PHP在構建快速、可擴展的網站和應用程序方面表現出色,常用於WordPress等CMS。 2.Python在數據科學和機器學習領域表現卓越,擁有豐富的庫如NumPy和TensorFlow。

See all articles