java中LRU快取實現
LRU是Least Recently Used 的縮寫,翻譯過來就是“最近最少使用”,LRU快取就是使用這種原理實現,簡單的說就是緩存一定量的數據,當超過設定的閾值時就把一些過期的資料刪除掉。
例如我們快取10000條數據,當數據小於10000時可以隨意添加,當超過10000時就需要把新的數據添加進來,同時要把過期數據刪除,以確保我們最大緩存10000條,那要怎麼確定刪除哪一條過期資料呢,採用LRU演算法實現的話就是將最老的資料刪掉。
下面來說下Java版的LRU快取實作:(建議:java影片教學)
Java裡面實作LRU快取通常有兩種選擇,一種是使用LinkedHashMap,一種是自己設計資料結構,使用鍊錶HashMap
LRU Cache的LinkedHashMap實作
LinkedHashMap本身已經實現了順序存儲,預設是按照元素的添加順序存儲,也可以啟用按照訪問順序存儲,即最近讀取的數據放在最前面,最早讀取的數據放在最後面,然後它還有一個判斷是否刪除最舊數據的方法,預設是回傳false,即不刪除資料。
我們使用LinkedHashMap實作LRU快取的方法就是對LinkedHashMap實作簡單的擴展,擴展方式有兩種,一種是inheritance,一種是delegation。
//LinkedHashMap的一个构造函数,当参数accessOrder为true时,即会按照访问顺序排序,最近访问的放在最前,最早访问的放在后面 public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder) { super(initialCapacity, loadFactor); this.accessOrder = accessOrder; } //LinkedHashMap自带的判断是否删除最老的元素方法,默认返回false,即不删除老数据 //我们要做的就是重写这个方法,当满足一定条件时删除老数据 protected boolean removeEldestEntry(Map.Entry<K,V> eldest) { return false; }
LRU快取LinkedHashMap(inheritance)實作
採用inheritance方式實作比較簡單,而且實作了Map接口,在多執行緒環境使用時可以使用 Collections.synchronizedMap()方法實現線程安全操作
package cn.lzrabbit.structure.lru; import java.util.LinkedHashMap; import java.util.Map; /** * Created by liuzhao on 14-5-15. */ public class LRUCache2<K, V> extends LinkedHashMap<K, V> { private final int MAX_CACHE_SIZE; public LRUCache2(int cacheSize) { super((int) Math.ceil(cacheSize / 0.75) + 1, 0.75f, true); MAX_CACHE_SIZE = cacheSize; } @Override protected boolean removeEldestEntry(Map.Entry eldest) { return size() > MAX_CACHE_SIZE; } @Override public String toString() { StringBuilder sb = new StringBuilder(); for (Map.Entry<K, V> entry : entrySet()) { sb.append(String.format("%s:%s ", entry.getKey(), entry.getValue())); } return sb.toString(); } }
這樣算是比較標準的實現吧,實際使用中這樣寫還是有些繁瑣,更實用的方法時像下面這樣寫,省去了單獨見一個類別的麻煩
final int cacheSize = 100; Map<String, String> map = new LinkedHashMap<String, String>((int) Math.ceil(cacheSize / 0.75f) + 1, 0.75f, true) { @Override protected boolean removeEldestEntry(Map.Entry<String, String> eldest) { return size() > cacheSize; } };
LRU快取LinkedHashMap(delegation)實作
delegation方式實作更優雅一些,但是由於沒有實作Map接口,所以執行緒同步就需要自己搞定了
package cn.lzrabbit.structure.lru; import java.util.LinkedHashMap; import java.util.Map; import java.util.Set; /** * Created by liuzhao on 14-5-13. */ public class LRUCache3<K, V> { private final int MAX_CACHE_SIZE; private final float DEFAULT_LOAD_FACTOR = 0.75f; LinkedHashMap<K, V> map; public LRUCache3(int cacheSize) { MAX_CACHE_SIZE = cacheSize; //根据cacheSize和加载因子计算hashmap的capactiy,+1确保当达到cacheSize上限时不会触发hashmap的扩容, int capacity = (int) Math.ceil(MAX_CACHE_SIZE / DEFAULT_LOAD_FACTOR) + 1; map = new LinkedHashMap(capacity, DEFAULT_LOAD_FACTOR, true) { @Override protected boolean removeEldestEntry(Map.Entry eldest) { return size() > MAX_CACHE_SIZE; } }; } public synchronized void put(K key, V value) { map.put(key, value); } public synchronized V get(K key) { return map.get(key); } public synchronized void remove(K key) { map.remove(key); } public synchronized Set<Map.Entry<K, V>> getAll() { return map.entrySet(); } public synchronized int size() { return map.size(); } public synchronized void clear() { map.clear(); } @Override public String toString() { StringBuilder sb = new StringBuilder(); for (Map.Entry entry : map.entrySet()) { sb.append(String.format("%s:%s ", entry.getKey(), entry.getValue())); } return sb.toString(); } }
LRU Cache的鍊錶HashMap實作
## 注:此實作為非執行緒安全,若在多執行緒環境下使用需要在相關方法上新增synchronized以實作執行緒安全操作package cn.lzrabbit.structure.lru; import java.util.HashMap; /** * Created by liuzhao on 14-5-12. */ public class LRUCache1<K, V> { private final int MAX_CACHE_SIZE; private Entry first; private Entry last; private HashMap<K, Entry<K, V>> hashMap; public LRUCache1(int cacheSize) { MAX_CACHE_SIZE = cacheSize; hashMap = new HashMap<K, Entry<K, V>>(); } public void put(K key, V value) { Entry entry = getEntry(key); if (entry == null) { if (hashMap.size() >= MAX_CACHE_SIZE) { hashMap.remove(last.key); removeLast(); } entry = new Entry(); entry.key = key; } entry.value = value; moveToFirst(entry); hashMap.put(key, entry); } public V get(K key) { Entry<K, V> entry = getEntry(key); if (entry == null) return null; moveToFirst(entry); return entry.value; } public void remove(K key) { Entry entry = getEntry(key); if (entry != null) { if (entry.pre != null) entry.pre.next = entry.next; if (entry.next != null) entry.next.pre = entry.pre; if (entry == first) first = entry.next; if (entry == last) last = entry.pre; } hashMap.remove(key); } private void moveToFirst(Entry entry) { if (entry == first) return; if (entry.pre != null) entry.pre.next = entry.next; if (entry.next != null) entry.next.pre = entry.pre; if (entry == last) last = last.pre; if (first == null || last == null) { first = last = entry; return; } entry.next = first; first.pre = entry; first = entry; entry.pre = null; } private void removeLast() { if (last != null) { last = last.pre; if (last == null) first = null; else last.next = null; } } private Entry<K, V> getEntry(K key) { return hashMap.get(key); } @Override public String toString() { StringBuilder sb = new StringBuilder(); Entry entry = first; while (entry != null) { sb.append(String.format("%s:%s ", entry.key, entry.value)); entry = entry.next; } return sb.toString(); } class Entry<K, V> { public Entry pre; public Entry next; public K key; public V value; } }
LinkedHashMap的FIFO實作
FIFO是First Input First Output的縮寫,也就是常說的先入先出,預設情況下LinkedHashMap就是按照添加順序保存,我們只需重寫一下removeEldestEntry方法即可輕鬆實現一個FIFO緩存,簡化版的實現代碼如下final int cacheSize = 5; LinkedHashMap<Integer, String> lru = new LinkedHashMap<Integer, String>() { @Override protected boolean removeEldestEntry(Map.Entry<Integer, String> eldest) { return size() > cacheSize; } };
呼叫範例
測試程式碼package cn.lzrabbit.structure.lru; import cn.lzrabbit.ITest; import java.util.LinkedHashMap; import java.util.Map; /** * Created by liuzhao on 14-5-15. */ public class LRUCacheTest { public static void main(String[] args) throws Exception { System.out.println("start..."); lruCache1(); lruCache2(); lruCache3(); lruCache4(); System.out.println("over..."); } static void lruCache1() { System.out.println(); System.out.println("===========================LRU 链表实现==========================="); LRUCache1<Integer, String> lru = new LRUCache1(5); lru.put(1, "11"); lru.put(2, "11"); lru.put(3, "11"); lru.put(4, "11"); lru.put(5, "11"); System.out.println(lru.toString()); lru.put(6, "66"); lru.get(2); lru.put(7, "77"); lru.get(4); System.out.println(lru.toString()); System.out.println(); } static <T> void lruCache2() { System.out.println(); System.out.println("===========================LRU LinkedHashMap(inheritance)实现==========================="); LRUCache2<Integer, String> lru = new LRUCache2(5); lru.put(1, "11"); lru.put(2, "11"); lru.put(3, "11"); lru.put(4, "11"); lru.put(5, "11"); System.out.println(lru.toString()); lru.put(6, "66"); lru.get(2); lru.put(7, "77"); lru.get(4); System.out.println(lru.toString()); System.out.println(); } static void lruCache3() { System.out.println(); System.out.println("===========================LRU LinkedHashMap(delegation)实现==========================="); LRUCache3<Integer, String> lru = new LRUCache3(5); lru.put(1, "11"); lru.put(2, "11"); lru.put(3, "11"); lru.put(4, "11"); lru.put(5, "11"); System.out.println(lru.toString()); lru.put(6, "66"); lru.get(2); lru.put(7, "77"); lru.get(4); System.out.println(lru.toString()); System.out.println(); } static void lruCache4() { System.out.println(); System.out.println("===========================FIFO LinkedHashMap默认实现==========================="); final int cacheSize = 5; LinkedHashMap<Integer, String> lru = new LinkedHashMap<Integer, String>() { @Override protected boolean removeEldestEntry(Map.Entry<Integer, String> eldest) { return size() > cacheSize; } }; lru.put(1, "11"); lru.put(2, "11"); lru.put(3, "11"); lru.put(4, "11"); lru.put(5, "11"); System.out.println(lru.toString()); lru.put(6, "66"); lru.get(2); lru.put(7, "77"); lru.get(4); System.out.println(lru.toString()); System.out.println(); } }
"C:\Program Files (x86)\Java\jdk1.6.0_10\bin\java" -Didea.launcher.port=7535 "-Didea.launcher.bin.path=C:\Program Files (x86)\JetBrains\IntelliJ IDEA 13.0.2\bin" -Dfile.encoding=UTF-8 -classpath "C:\Program Files (x86)\Java\jdk1.6.0_10\jre\lib\charsets.jar;C:\Program Files (x86)\Java\jdk1.6.0_10\jre\lib\deploy.jar;C:\Program Files (x86)\Java\jdk1.6.0_10\jre\lib\javaws.jar;C:\Program Files (x86)\Java\jdk1.6.0_10\jre\lib\jce.jar;C:\Program Files (x86)\Java\jdk1.6.0_10\jre\lib\jsse.jar;C:\Program Files (x86)\Java\jdk1.6.0_10\jre\lib\management-agent.jar;C:\Program Files (x86)\Java\jdk1.6.0_10\jre\lib\plugin.jar;C:\Program Files (x86)\Java\jdk1.6.0_10\jre\lib\resources.jar;C:\Program Files (x86)\Java\jdk1.6.0_10\jre\lib\rt.jar;C:\Program Files (x86)\Java\jdk1.6.0_10\jre\lib\ext\dnsns.jar;C:\Program Files (x86)\Java\jdk1.6.0_10\jre\lib\ext\localedata.jar;C:\Program Files (x86)\Java\jdk1.6.0_10\jre\lib\ext\sunjce_provider.jar;C:\Program Files (x86)\Java\jdk1.6.0_10\jre\lib\ext\sunmscapi.jar;C:\Program Files (x86)\Java\jdk1.6.0_10\jre\lib\ext\sunpkcs11.jar;D:\SVN\projects\Java\Java.Algorithm\target\test-classes;D:\SVN\projects\Java\Java.Algorithm\target\classes;C:\Program Files (x86)\JetBrains\IntelliJ IDEA 13.0.2\lib\idea_rt.jar" com.intellij.rt.execution.application.AppMain Main start... ===========================LRU 链表实现=========================== 5:11 4:11 3:11 2:11 1:11 4:11 7:77 2:11 6:66 5:11 ===========================LRU LinkedHashMap(inheritance)实现=========================== 1:11 2:11 3:11 4:11 5:11 5:11 6:66 2:11 7:77 4:11 ===========================LRU LinkedHashMap(delegation)实现=========================== 1:11 2:11 3:11 4:11 5:11 5:11 6:66 2:11 7:77 4:11 ===========================FIFO LinkedHashMap默认实现=========================== {1=11, 2=11, 3=11, 4=11, 5=11} {3=11, 4=11, 5=11, 6=66, 7=77} over... Process finished with exit code 0
java基礎教學專欄。
以上是java中LRU快取實現的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

Java 8引入了Stream API,提供了一種強大且表達力豐富的處理數據集合的方式。然而,使用Stream時,一個常見問題是:如何從forEach操作中中斷或返回? 傳統循環允許提前中斷或返回,但Stream的forEach方法並不直接支持這種方式。本文將解釋原因,並探討在Stream處理系統中實現提前終止的替代方法。 延伸閱讀: Java Stream API改進 理解Stream forEach forEach方法是一個終端操作,它對Stream中的每個元素執行一個操作。它的設計意圖是處

PHP是一種廣泛應用於服務器端的腳本語言,特別適合web開發。 1.PHP可以嵌入HTML,處理HTTP請求和響應,支持多種數據庫。 2.PHP用於生成動態網頁內容,處理表單數據,訪問數據庫等,具有強大的社區支持和開源資源。 3.PHP是解釋型語言,執行過程包括詞法分析、語法分析、編譯和執行。 4.PHP可以與MySQL結合用於用戶註冊系統等高級應用。 5.調試PHP時,可使用error_reporting()和var_dump()等函數。 6.優化PHP代碼可通過緩存機制、優化數據庫查詢和使用內置函數。 7

PHP和Python各有優勢,選擇應基於項目需求。 1.PHP適合web開發,語法簡單,執行效率高。 2.Python適用於數據科學和機器學習,語法簡潔,庫豐富。

膠囊是一種三維幾何圖形,由一個圓柱體和兩端各一個半球體組成。膠囊的體積可以通過將圓柱體的體積和兩端半球體的體積相加來計算。本教程將討論如何使用不同的方法在Java中計算給定膠囊的體積。 膠囊體積公式 膠囊體積的公式如下: 膠囊體積 = 圓柱體體積 兩個半球體體積 其中, r: 半球體的半徑。 h: 圓柱體的高度(不包括半球體)。 例子 1 輸入 半徑 = 5 單位 高度 = 10 單位 輸出 體積 = 1570.8 立方單位 解釋 使用公式計算體積: 體積 = π × r2 × h (4

PHP適合web開發,特別是在快速開發和處理動態內容方面表現出色,但不擅長數據科學和企業級應用。與Python相比,PHP在web開發中更具優勢,但在數據科學領域不如Python;與Java相比,PHP在企業級應用中表現較差,但在web開發中更靈活;與JavaScript相比,PHP在後端開發中更簡潔,但在前端開發中不如JavaScript。

PHP和Python各有優勢,適合不同場景。 1.PHP適用於web開發,提供內置web服務器和豐富函數庫。 2.Python適合數據科學和機器學習,語法簡潔且有強大標準庫。選擇時應根據項目需求決定。

Java是熱門程式語言,適合初學者和經驗豐富的開發者學習。本教學從基礎概念出發,逐步深入解說進階主題。安裝Java開發工具包後,可透過建立簡單的「Hello,World!」程式來實踐程式設計。理解程式碼後,使用命令提示字元編譯並執行程序,控制台上將輸出「Hello,World!」。學習Java開啟了程式設計之旅,隨著掌握程度加深,可創建更複雜的應用程式。
