1、什麼是redis?
Redis 是基於記憶體的高效能key-value資料庫。
專題推薦:2020年redis面試題大全(最新)
2、Reids的特色
#Redis本質上是一個Key-Value類型的記憶體資料庫,很像memcached,整個資料庫統統載入在記憶體當中進行操作,定期透過非同步操作把資料庫資料flush到硬碟上進行儲存。因為是純記憶體操作,Redis的效能非常出色,每秒可以處理超過 10萬次讀寫操作,是已知效能最快的Key-Value DB。
Redis的出色之處不僅僅是效能,Redis最大的魅力是支援保存多種資料結構,此外單一value的最大限制是1GB,不像memcached只能保存1MB的數據,因此Redis可以用來實現很多有用的功能,比方說用他的List來做FIFO雙向鍊錶,實現一個輕量級的高性能消
息隊列服務,用他的Set可以做高性能的tag系統等等。另外Redis也可以對存入的Key-Value設定expire時間,因此也可以當作一 個功能加強版的memcached來用。
Redis的主要缺點是資料庫容量受到實體記憶體的限制,不能用作海量資料的高效能讀寫,因此Redis適合的場景主要限制在較小資料量的高效能操作和運算上。
相關學習推薦:redis影片教學
3、使用redis有哪些好處?
(1) 速度快,因為資料存在記憶體中,類似HashMap,HashMap的優點就是尋找和操作的時間複雜度都是O(1)
#(2 ) 支援豐富資料類型,支援string,list,set,sorted set,hash
(3) 支援事務,操作都是原子性,所謂的原子性就是對資料的變更要麼全部執行,要麼全部不執行
(4) 豐富的特性:可用於緩存,訊息,按key設定過期時間,過期後將會自動刪除
4、redis相比memcached有哪些優勢?
(1) memcached所有的值都是簡單的字串,redis作為其替代者,支援更為豐富的資料型別
(2) redis的速度比memcached快很多
(3) redis可以持久化其資料
5、Memcache與Redis的差異都有哪些?
1)、儲存方式 Memecache把資料全部存在記憶體之中,斷電後會掛掉,資料不能超過記憶體大小。 Redis有部份存在硬碟上,這樣能確保資料的持久性。
2)、資料支援類型 Memcache對資料型別支援相對簡單。 Redis有複雜的資料類型。
3)、使用底層模型不同 它們之間底層實作方式 以及與客戶端之間通訊的應用協定不一樣。 Redis直接自己建構了VM 機制 ,因為一般的系統呼叫系統函數的話,會浪費一定的時間去移動和請求。
6、redis常見效能問題與解決方案:
1).Master寫記憶體快照,save指令調度rdbSave函數,會阻塞主執行緒的工作,當快照比較大時對效能影響是非常大的,會間斷性暫停服務,所以Master最好不要寫記憶體快照。
2).Master AOF持久化,如果不重寫AOF文件,這個持久化方式對性能的影響是最小的,但是AOF文件會不斷增大,AOF文件過大會影響Master重啟的恢復速度。 Master最好不要做任何持久化工作,包括內存快照和AOF日誌文件,特別是不要啟用內存快照做持化,如果數據比較關鍵,某個Slave開啟AOF備份數據,策略為每秒同步一次。
3).Master呼叫BGREWRITEAOF重寫AOF文件,AOF在重寫的時候會佔大量的CPU和記憶體資源,導致服務load過高,出現短暫服務暫停現象。
4)、Redis主從複製的效能問題,為了主從複製的速度和連接的穩定性,Slave和Master最好在同一個區域網路內
7、 mySQL裡有2000w數據,redis中只存20w的數據,如何確保redis中的數據都是熱點數據
相關知識:redis 內存數據集大小上升到一定大小的時候,就會施行資料淘汰策略(回收策略)。 redis 提供6種資料淘汰策略:
volatile-lru:從已設定過期時間的資料集(server.db[i].expires)中挑選最近最少使用的資料淘汰
# volatile-ttl:從已設定過期時間的資料集(server.db[i].expires)中挑選將要過期的資料淘汰
volatile-random:從已設定過期時間的資料集(server. db[i].expires)中任意選擇資料淘汰
allkeys-lru:從資料集(server.db[i].dict)中挑選最近最少使用的資料淘汰
allkeys -random:從資料集(server.db[i].dict)中任意選擇資料淘汰
no-enviction(驅逐):禁止驅逐資料
8、請用Redis和任何語言實作一段惡意登入保護的程式碼,限制1小時內每用戶Id最多只能登入5次。具體登入函數或功能用空函數即可,不用詳細寫出。
用列表實現:列表中每個元素代表登陸時間,只要最後的第5次登陸時間和現在時間差不超過1小時就禁止登陸.用Python寫的代碼如下:
#!/usr/bin/env python3 import redis import sys import time r = redis.StrictRedis(host=’127.0.0.1′, port=6379, db=0) try: id = sys.argv[1] except: print(‘input argument error’) sys.exit(0) if r.llen(id) >= 5 and time.time() – float(r.lindex(id, 4)) <= 3600: print(“you are forbidden logining”) else: print(‘you are allowed to login’) r.lpush(id, time.time()) # login_func()
9.為什麼redis需要把所有資料放到記憶體中?
Redis為了達到最快的讀寫速度將數據都讀到記憶體中,並透過非同步的方式將資料寫入磁碟。所以redis具有快速和資料持久化的特徵。如果不將資料放在記憶體中,磁碟I/O速度為嚴重影響redis的效能。在記憶體越來越便宜的今天,redis將會越來越受歡迎。
如果設定了最大使用的內存,則資料已有記錄數達到內存限值後不能繼續插入新值。
10.Redis是單進程單線程的
redis利用隊列技術將並發訪問變為串行訪問,消除了傳統資料庫串行控制的開銷
11.redis的並發競爭問題如何解決?
Redis為單一進程單執行緒模式,採用佇列模式將並發存取變成串列存取。 Redis本身沒有鎖定的概念,Redis對於多個客戶端連線並不存在競爭,但是在Jedis客戶端對Redis進行並發存取時會發生連線逾時、資料轉換錯誤、阻塞、客戶端關閉連線等問題,這些問題均是由於客戶端連線混亂造成。
對此有2種解決方法:
1.客戶端角度,為確保每個客戶端間正常有序與Redis進行通信,對連接進行池化,同時對客戶端讀寫Redis操作採用內部鎖定synchronized。
2.伺服器角度,利用setnx實現鎖定。
註:對於第一種,需要應用程式自己處理資源的同步,可以使用的方法比較通俗,可以使用synchronized也可以使用lock;第二種需要用到Redis的setnx指令,但是需要注意一些問題。
12.redis事物的了解CAS(check-and-set 操作實現樂觀鎖)?
和眾多其它資料庫一樣,Redis作為NoSQL資料庫也同樣提供了事務機制。在Redis中,MULTI/EXEC/DISCARD/WATCH這四個命令是我們實現交易的基石。
相信對有關係型資料庫開發經驗的開發者而言這一概念並不陌生,即便如此,我們還是會簡要的列出Redis事務的實作特徵:
1) . 在事務中的所有命令都將會被串行化的順序執行,事務執行期間,Redis不會再為其它客戶端的請求提供任何服務,從而保證了事物中的所有命令被原子的執行。
2). 和關係型資料庫中的事務相比,在Redis事務中如果有某一條命令執行失敗,其後的命令仍然會被繼續執行。
3). 我們可以透過MULTI指令開啟一個事務,有關係型資料庫開發經驗的人可以將其理解為"BEGIN TRANSACTION"語句。在該語句之後執行的命令都會被視為事務之內的操作,最後我們可以透過執行EXEC/DISCARD指令來提交/回滾該交易內的所有操作。這兩個Redis指令可被視為等同於關係型資料庫中的COMMIT/ROLLBACK語句。
4). 在交易開啟之前,如果客戶端與伺服器之間出現通訊故障並導致網路斷開,其後所有待執行的語句都將不會被伺服器執行。然而如果網路中斷事件是發生在客戶端執行EXEC命令之後,那麼該事務中的所有命令都會被伺服器執行。
5). 當使用Append-Only模式時,Redis會透過呼叫系統函數write將該交易內的所有寫入操作在本次呼叫中全部寫入磁碟。然而如果在寫入的過程中出現系統崩潰,如電源故障導致的宕機,那麼此時也許只有部分資料被寫入到磁碟,而另外一部分資料卻已經遺失。
Redis伺服器會在重新啟動時執行一系列必要的一致性檢測,一旦發現類似問題,就會立即退出並給出相應的錯誤提示。此時,我們就要充分利用Redis工具包中提供的redis-check-aof工具,該工具可以幫助我們定位到資料不一致的錯誤,並將已經寫入的部分資料回滾。修復之後我們就可以再次重新啟動Redis伺服器了。
13.WATCH指令與基於CAS的樂觀鎖定:
在Redis的交易中,WATCH指令可用於提供CAS(check-and-set)功能。假設我們透過WATCH指令在事務執行之前監控了多個Keys,倘若在WATCH之後有任何Key的值發生了變化,EXEC命令執行的事務都將被放棄,同時返回Null multi-bulk應答以通知呼叫者事務
執行失敗。例如,我們再次假設Redis中並未提供incr指令來完成鍵值的原子性遞增,如果要實作該功能,我們只能自行編寫對應的程式碼。其偽碼如下:
val = GET mykey val = val + 1 SET mykey $val
以上代码只有在单连接的情况下才可以保证执行结果是正确的,因为如果在同一时刻有多个客户端在同时执行该段代码,那么就会出现多线程程序中经常出现的一种错误场景--竞态争用(race condition)。
比如,客户端A和B都在同一时刻读取了mykey的原有值,假设该值为10,此后两个客户端又均将该值加一后set回Redis服务器,这样就会导致mykey的结果为11,而不是我们认为的12。为了解决类似的问题,我们需要借助WATCH命令的帮助,见如下代码:
WATCH mykey val = GET mykey val = val + 1 MULTI SET mykey $val EXEC
和此前代码不同的是,新代码在获取mykey的值之前先通过WATCH命令监控了该键,此后又将set命令包围在事务中,这样就可以有效的保证每个连接在执行EXEC之前,如果当前连接获取的mykey的值被其它连接的客户端修改,那么当前连接的EXEC命令将执行失败。这样调用者在判断返回值后就可以获悉val是否被重新设置成功。
14.redis持久化的几种方式
1、快照(snapshots)
缺省情况情况下,Redis把数据快照存放在磁盘上的二进制文件中,文件名为dump.rdb。你可以配置Redis的持久化策略,例如数据集中每N秒钟有超过M次更新,就将数据写入磁盘;或者你可以手工调用命令SAVE或BGSAVE。
工作原理
. Redis forks.
. 子进程开始将数据写到临时RDB文件中。
. 当子进程完成写RDB文件,用新文件替换老文件。
. 这种方式可以使Redis使用copy-on-write技术。
2、AOF
快照模式并不十分健壮,当系统停止,或者无意中Redis被kill掉,最后写入Redis的数据就会丢失。这对某些应用也许不是大问题,但对于要求高可靠性的应用来说,Redis就不是一个合适的选择。Append-only文件模式是另一种选择。你可以在配置文件中打开AOF模式。
3、虚拟内存方式
当你的key很小而value很大时,使用VM的效果会比较好.因为这样节约的内存比较大.
当你的key不小时,可以考虑使用一些非常方法将很大的key变成很大的value,比如你可以考虑将key,value组合成一个新的value.
vm-max-threads这个参数,可以设置访问swap文件的线程数,设置最好不要超过机器的核数,如果设置为0,那么所有对swap文件的操作都是串行的.可能会造成比较长时间的延迟,但是对数据完整性有很好的保证.
自己测试的时候发现用虚拟内存性能也不错。如果数据量很大,可以考虑分布式或者其他数据库
15.redis的缓存失效策略和主键失效机制
作为缓存系统都要定期清理无效数据,就需要一个主键失效和淘汰策略.
在Redis当中,有生存期的key被称为volatile。在创建缓存时,要为给定的key设置生存期,当key过期的时候(生存期为0),它可能会被删除。
1、影响生存时间的一些操作
生存时间可以通过使用 DEL 命令来删除整个 key 来移除,或者被 SET 和 GETSET 命令覆盖原来的数据,也就是说,修改key对应的value和使用另外相同的key和value来覆盖以后,当前数据的生存时间不同。
比如说,对一个 key 执行INCR命令,对一个列表进行LPUSH命令,或者对一个哈希表执行HSET命令,这类操作都不会修改 key 本身的生存时间。另一方面,如果使用RENAME对一个 key 进行改名,那么改名后的 key的生存时间和改名前一样。
RENAME命令的另一种可能是,尝试将一个带生存时间的 key 改名成另一个带生存时间的 another_key ,这时旧的 another_key (以及它的生存时间)会被删除,然后旧的 key 会改名为 another_key ,因此,新的 another_key 的生存时间也和原本的 key 一样。使用PERSIST命令可以在不删除 key 的情况下,移除 key 的生存时间,让 key 重新成为一个persistent key 。
2、如何更新生存时间
可以对一个已经带有生存时间的 key 执行EXPIRE命令,新指定的生存时间会取代旧的生存时间。过期时间的精度已经被控制在1ms之内,主键失效的时间复杂度是O(1),EXPIRE和TTL命令搭配使用,TTL可以查看key的当前生存时间。设置成功返回 1;当 key 不存在或者不能为 key 设置生存时间时,返回 0 。
最大缓存配置
在 redis 中,允许用户设置最大使用内存大小
server.maxmemory
默认为0,没有指定最大缓存,如果有新的数据添加,超过最大内存,则会使redis崩溃,所以一定要设置。redis 内存数据集大小上升到一定大小的时候,就会实行数据淘汰策略。
redis 提供 6种数据淘汰策略:
. volatile-lru:从已设置过期时间的数据集(server.db[i].expires)中挑选最近最少使用的数据淘汰
. volatile-ttl:从已设置过期时间的数据集(server.db[i].expires)中挑选将要过期的数据淘汰
. volatile-random:从已设置过期时间的数据集(server.db[i].expires)中任意选择数据淘汰
. allkeys-lru:从数据集(server.db[i].dict)中挑选最近最少使用的数据淘汰
. allkeys-random:从数据集(server.db[i].dict)中任意选择数据淘汰
. no-enviction(驱逐):禁止驱逐数据
注意这里的6种机制,volatile和allkeys规定了是对已设置过期时间的数据集淘汰数据还是从全部数据集淘汰数据,后面的lru、ttl以及random是三种不同的淘汰策略,再加上一种no-enviction永不回收的策略。
使用策略规则:
1、如果数据呈现幂律分布,也就是一部分数据访问频率高,一部分数据访问频率低,则使用allkeys-lru
2、如果数据呈现平等分布,也就是所有的数据访问频率都相同,则使用allkeys-random
三种数据淘汰策略:
ttl和random比较容易理解,实现也会比较简单。主要是Lru最近最少使用淘汰策略,设计上会对key 按失效时间排序,然后取最先失效的key进行淘汰
16.redis 最适合的场景
Redis最适合所有数据in-momory的场景,虽然Redis也提供持久化功能,但实际更多的是一个disk-backed的功能,跟传统意义上的持久化有比较大的差别,那么可能大家就会有疑问,似乎Redis更像一个加强版的Memcached,那么何时使用Memcached,何时使用Redis呢?
如果简单地比较Redis与Memcached的区别,大多数都会得到以下观点:
1 、Redis不仅仅支持简单的k/v类型的数据,同时还提供list,set,zset,hash等数据结构的存储。
2 、Redis支持数据的备份,即master-slave模式的数据备份。
3 、Redis支持数据的持久化,可以将内存中的数据保持在磁盘中,重启的时候可以再次加载进行使用。
(1)、会话缓存(Session Cache)
最常用的一种使用Redis的情景是会话缓存(session cache)。用Redis缓存会话比其他存储(如Memcached)的优势在于:Redis提供持久化。当维护一个不是严格要求一致性的缓存时,如果用户的购物车信息全部丢失,大部分人都会不高兴的,现在,
他们还会这样吗?
幸运的是,随着 Redis 这些年的改进,很容易找到怎么恰当的使用Redis来缓存会话的文档。甚至广为人知的商业平台Magento也提供Redis的插件。
(2)、全页缓存(FPC)
除基本的会话token之外,Redis还提供很简便的FPC平台。回到一致性问题,即使重启了Redis实例,因为有磁盘的持久化,用户也不会看到页面加载速度的下降,这是一个极大改进,类似PHP本地FPC。
再次以Magento为例,Magento提供一个插件来使用Redis作为全页缓存后端。
此外,对WordPress的用户来说,Pantheon有一个非常好的插件 wp-redis,这个插件能帮助你以最快速度加载你曾浏览过的页面。
(3)、队列
Reids在内存存储引擎领域的一大优点是提供 list 和 set 操作,这使得Redis能作为一个很好的消息队列平台来使用。Redis作为队列使用的操作,就类似于本地程序语言(如Python)对 list 的 push/pop 操作。
如果你快速的在Google中搜索“Redis queues”,你马上就能找到大量的开源项目,这些项目的目的就是利用Redis创建非常好的后端工具,以满足各种队列需求。例如,Celery有一个后台就是使用Redis作为broker,你可以从这里去查看。
(4),排行榜/计数器
Redis在内存中对数字进行递增或递减的操作实现的非常好。集合(Set)和有序集合(Sorted Set)也使得我们在执行这些操作的时候变的非常简单,Redis只是正好提供了这两种数据结构。所以,我们要从排序集合中获取到排名最靠前的10个用户–我们称之为“user_scores”,我们只需要像下面一样执行即可:
当然,这是假定你是根据你用户的分数做递增的排序。如果你想返回用户及用户的分数,你需要这样执行:
ZRANGE user_scores 0 10 WITHSCORES
Agora Games就是一个很好的例子,用Ruby实现的,它的排行榜就是使用Redis来存储数据的,你可以在这里看到。
(5)、发布/订阅
最後(但肯定不是最不重要的)是Redis的發布/訂閱功能。發布/訂閱的使用場景確實非常多。我已看見人們在社群網路連線中使用,還可作為基於發布/訂閱的腳本觸發器,甚至用Redis的發布/訂閱功能來建立聊天系統! (不,這是真的,你可以去核實)。
Redis提供的所有特性中,我感覺這個是喜歡的人最少的一個,雖然它為用戶提供如果此多功能。
推薦:redis入門教學
以上是redis一些常見的面試問題(附答案)的詳細內容。更多資訊請關注PHP中文網其他相關文章!