目錄
引子
十大經典演算法排序總結比較
冒泡排序(Bubble Sort)
#作為最簡單的排序演算法之一,冒泡排序給我的感覺就像Abandon在單字書裡出現的感覺一樣,每次都在第一頁第一位,所以最熟悉。 。 。冒泡排序還有一種最佳化演算法,就是立一個flag,當在一趟序列遍歷中元素沒有發生交換,則證明該序列已經有序。但這種改進對於提升性能來說並沒有什麼太大作用。 。 。
當輸入的資料已經是正序時(都已經是正序了,我還要你冒泡排序有何用啊。。。 。)
當輸入的資料是反序時(寫一個for迴圈反序輸出資料不就行了,幹嘛要用你冒泡排序呢,我是閒的嗎。。)
Bubble Sort 動圖示範演算法視覺化來源:http://visualgo.net/
冒泡排序JavaScript程式碼實作:
選擇排序(Selection Sort)
表現最穩定的排序演算法之一,因為無論什麼資料進去都是O(n²)的時間複雜度。 。 。所以用到它的時候,資料規模越小越好。唯一的好處可能就是不佔用額外的記憶體空間了吧。
选择排序JavaScript代码实现:
插入排序(Insertion Sort)
插入排序须知:
插入排序动图演示:
插入排序JavaScript代码实现:
希尔排序(Shell Sort)
希尔排序须知:
希尔排序JavaScript代码实现:
归并排序(Merge Sort)
归并排序须知:
归并排序动图演示:
归并排序JavaScript代码实现:
快速排序(Quick Sort)
快速排序须知:
快速排序动图演示:
快速排序JavaScript代码实现:
堆排序(Heap Sort)
堆排序须知:
堆排序动图演示:
堆排序JavaScript代码实现:
计数排序(Counting Sort)
计数排序须知:
计数排序动图演示:
计数排序JavaScript代码实现:
桶排序(Bucket Sort)
桶排序须知:
什么时候最快(Best Cases):
什么时候最慢(Worst Cases):
桶排序JavaScript代码实现:
基数排序(Radix Sort)
基数排序须知:
基数排序 vs 计数排序 vs 桶排序
LSD基数排序动图演示:
基数排序JavaScript代码实现:
写在最后
首頁 web前端 js教程 JS 家的排序演算法 - 前端

JS 家的排序演算法 - 前端

Jun 16, 2020 pm 05:09 PM
javascript 演算法

JS 家的排序演算法 - 前端

引子

有句話怎麼說來著:

雷鋒推倒雷峰塔,Java implements JavaScript.

當年,想憑藉抱Java大腿火一把而不惜把自己名字給改了的JavaScript(原名LiveScript),如今早已光芒萬丈。 node JS的出現更是讓JavaScript可以前後端通吃。雖然Java依然製霸企業級軟體開發領域(C/C 的大神們不要打我。。。),但在Web的江湖,JavaScript可謂風頭無兩,坐上了頭把交椅。

然而,在傳統的電腦演算法和資料結構領域,大多數專業教材和書籍的預設語言都是Java或C/C 。這對最近想惡補演算法和資料結構知識的我造成了一定困擾,因為我想尋找一本以JavaScript為預設語言的演算法書。當我了解到O’REILLY家的動物叢書系列裡有一本叫做《資料結構與演算法JavaScript描述》時,便興奮的花了兩天時間把這本書從頭到尾讀了一遍。它是一本很好的針對前端開發者們的入門演算法書籍,可是,它有一個很大的缺陷,就是裡面有很多明顯的小錯誤,明顯到就連我這種半路出家的程式猿都能一眼看出來。還有一個問題是,很多重要的演算法和資料結構知識並沒有在這本書裡被提及。這些問題對於身為一個晚期強迫症患者的我來說簡直不能忍受。於是乎,一言不合我就決定自己找資料總結演算法。那麼,我就從演算法領域裡最基礎的知識點——排序演算法總結起好了。

我相信以下的程式碼裡一定會有某些bug或錯誤或語法不規範等問題是我自己無法發現的,所以敬請各位大神能夠指出錯誤,因為只有在不斷改錯的道路上我才能有長久的進步。

十大經典演算法排序總結比較

一張圖概括:

JS 家的排序演算法 - 前端

。主流排序演算法概覽

名詞解釋:
n: 資料規模
k:「桶」的數量
In-place : 佔用常數內存,不佔用額外內存
Out-place: 佔用額外內存
穩定性
:排序後2個相等鍵值的順序和排序之前它們的順序相同

冒泡排序(Bubble Sort)

冒泡排序須知:

#作為最簡單的排序演算法之一,冒泡排序給我的感覺就像Abandon在單字書裡出現的感覺一樣,每次都在第一頁第一位,所以最熟悉。 。 。冒泡排序還有一種最佳化演算法,就是立一個flag,當在一趟序列遍歷中元素沒有發生交換,則證明該序列已經有序。但這種改進對於提升性能來說並沒有什麼太大作用。 。 。

什麼時候最快(Best Cases):

當輸入的資料已經是正序時(都已經是正序了,我還要你冒泡排序有何用啊。。。 。)

什麼時候最慢(Worst Cases):

當輸入的資料是反序時(寫一個for迴圈反序輸出資料不就行了,幹嘛要用你冒泡排序呢,我是閒的嗎。。)

冒泡排序動圖示範:JS 家的排序演算法 - 前端

Bubble Sort 動圖示範演算法視覺化來源:http://visualgo.net/

冒泡排序JavaScript程式碼實作:

function bubbleSort(arr) {
    var len = arr.length;
    for (var i = 0; i  arr[j+1]) {        //相邻元素两两对比
                var temp = arr[j+1];        //元素交换
                arr[j+1] = arr[j];
                arr[j] = temp;
            }
        }
    }
    return arr;
}
登入後複製
選擇排序(Selection Sort)

選擇排序須知:

表現最穩定的排序演算法之一,因為無論什麼資料進去都是O(n²)的時間複雜度。 。 。所以用到它的時候,資料規模越小越好。唯一的好處可能就是不佔用額外的記憶體空間了吧。

選擇排序動圖示範:JS 家的排序演算法 - 前端

###Selection Sort 動圖示範 演算法視覺化來源:http://visualgo.net/###
选择排序JavaScript代码实现:
function selectionSort(arr) {
    var len = arr.length;
    var minIndex, temp;
    for (var i = 0; i
登入後複製

插入排序(Insertion Sort)

插入排序须知:

插入排序的代码实现虽然没有冒泡排序和选择排序那么简单粗暴,但它的原理应该是最容易理解的了,因为只要打过扑克牌的人都应该能够秒懂。当然,如果你说你打扑克牌摸牌的时候从来不按牌的大小整理牌,那估计这辈子你对插入排序的算法都不会产生任何兴趣了。。。
插入排序和冒泡排序一样,也有一种优化算法,叫做拆半插入。对于这种算法,得了懒癌的我就套用教科书上的一句经典的话吧:感兴趣的同学可以在课后自行研究。。。

插入排序动图演示:

JS 家的排序演算法 - 前端

Insertion Sort 动图演示 算法可视化来源:http://visualgo.net/

插入排序JavaScript代码实现:
function insertionSort(arr) {
    var len = arr.length;
    var preIndex, current;
    for (var i = 1; i = 0 && arr[preIndex] > current) {
            arr[preIndex+1] = arr[preIndex];
            preIndex--;
        }
        arr[preIndex+1] = current;
    }
    return arr;
}
登入後複製

希尔排序(Shell Sort)

希尔排序须知:

希尔排序是插入排序的一种更高效率的实现。它与插入排序的不同之处在于,它会优先比较距离较远的元素。希尔排序的核心在于间隔序列的设定。既可以提前设定好间隔序列,也可以动态的定义间隔序列。动态定义间隔序列的算法是《算法(第4版》的合著者Robert Sedgewick提出的。在这里,我就使用了这种方法。

希尔排序JavaScript代码实现:
function shellSort(arr) {
    var len = arr.length,
        temp,
        gap = 1;
    while(gap  0; gap = Math.floor(gap/3)) {
        for (var i = gap; i = 0 && arr[j] > temp; j-=gap) {
                arr[j+gap] = arr[j];
            }
            arr[j+gap] = temp;
        }
    }
    return arr;
}
登入後複製

归并排序(Merge Sort)

归并排序须知:

作为一种典型的分而治之思想的算法应用,归并排序的实现由两种方法:

  1. 自上而下的递归(所有递归的方法都可以用迭代重写,所以就有了第2种方法)
  2. 自下而上的迭代

在《数据结构与算法JavaScript描述》中,作者给出了自下而上的迭代方法。但是对于递归法,作者却认为:

However, it is not possible to do so in JavaScript, as the recursion goes too deep
for the language to handle.
然而,在 JavaScript 中这种方式不太可行,因为这个算法的递归深度对它来讲太深了。  

说实话,我不太理解这句话。意思是JavaScript编译器内存太小,递归太深容易造成内存溢出吗?还望有大神能够指教。
和选择排序一样,归并排序的性能不受输入数据的影响,但表现比选择排序好的多,因为始终都是O(n log n)的时间复杂度。代价是需要额外的内存空间。

归并排序动图演示:

JS 家的排序演算法 - 前端

Merge Sort 动图演示 算法可视化来源:http://visualgo.net/

归并排序JavaScript代码实现:
function mergeSort(arr) {  //采用自上而下的递归方法
    var len = arr.length;
    if(len =>
登入後複製

快速排序(Quick Sort)

快速排序须知:

又是一种分而治之思想在排序算法上的典型应用。本质上来看,快速排序应该算是在冒泡排序基础上的递归分治法。
快速排序的名字起的是简单粗暴,因为一听到这个名字你就知道它存在的意义,就是快,而且效率高! 它是处理大数据最快的排序算法之一了。虽然Worst Case的时间复杂度达到了O(n²),但是人家就是优秀,在大多数情况下都比平均时间复杂度为O(n log n) 的排序算法表现要更好,可是这是为什么呢,我也不知道。。。好在我的强迫症又犯了,查了N多资料终于在《算法艺术与信息学竞赛》上找到了满意的答案:

快速排序的最坏运行情况是O(n²),比如说顺序数列的快排。但它的平摊期望时间是O(n log n) ,且O(n log n)记号中隐含的常数因子很小,比复杂度稳定等于O(n log n)的归并排序要小很多。所以,对绝大多数顺序性较弱的随机数列而言,快速排序总是优于归并排序。

快速排序动图演示:

JS 家的排序演算法 - 前端

Quick Sort 动图演示 算法可视化来源:http://visualgo.net/

快速排序JavaScript代码实现:
function quickSort(arr, left, right) {
    var len = arr.length,
        partitionIndex,
        left = typeof left != 'number' ? 0 : left,
        right = typeof right != 'number' ? len - 1 : right;

    if (left =>
登入後複製

堆排序(Heap Sort)

堆排序须知:

堆排序可以说是一种利用堆的概念来排序的选择排序。分为两种方法:

  1. 大顶堆:每个节点的值都大于或等于其子节点的值,在堆排序算法中用于升序排列
  2. 小顶堆:每个节点的值都小于或等于其子节点的值,在堆排序算法中用于降序排列
堆排序动图演示:

JS 家的排序演算法 - 前端

Heap Sort 动图演示 算法可视化来源:http://www.ee.ryerson.ca/~courses/coe428/sorting/heapsort.html

堆排序JavaScript代码实现:
var len;    //因为声明的多个函数都需要数据长度,所以把len设置成为全局变量

function buildMaxHeap(arr) {   //建立大顶堆
    len = arr.length;
    for (var i = Math.floor(len/2); i >= 0; i--) {
        heapify(arr, i);
    }
}

function heapify(arr, i) {     //堆调整
    var left = 2 * i + 1,
        right = 2 * i + 2,
        largest = i;

    if (left  arr[largest]) {
        largest = left;
    }

    if (right  arr[largest]) {
        largest = right;
    }

    if (largest != i) {
        swap(arr, i, largest);
        heapify(arr, largest);
    }
}

function swap(arr, i, j) {
    var temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
}

function heapSort(arr) {
    buildMaxHeap(arr);

    for (var i = arr.length-1; i > 0; i--) {
        swap(arr, 0, i);
        len--;
        heapify(arr, 0);
    }
    return arr;
}
登入後複製

计数排序(Counting Sort)

计数排序须知:

计数排序的核心在于将输入的数据值转化为键存储在额外开辟的数组空间中。
作为一种线性时间复杂度的排序,计数排序要求输入的数据必须是有确定范围的整数。

计数排序动图演示:

JS 家的排序演算法 - 前端

Counting Sort 动图演示 算法可视化来源:http://visualgo.net/

计数排序JavaScript代码实现:
function countingSort(arr, maxValue) {
    var bucket = new Array(maxValue+1),
        sortedIndex = 0;
        arrLen = arr.length,
        bucketLen = maxValue + 1;

    for (var i = 0; i  0) {
            arr[sortedIndex++] = j;
            bucket[j]--;
        }
    }

    return arr;
}
登入後複製

桶排序(Bucket Sort)

桶排序须知:

桶排序是计数排序的升级版。它利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。
为了使桶排序更加高效,我们需要做到这两点:

  1. 在额外空间充足的情况下,尽量增大桶的数量
  2. 使用的映射函数能够将输入的N个数据均匀的分配到K个桶中

同时,对于桶中元素的排序,选择何种比较排序算法对于性能的影响至关重要。

什么时候最快(Best Cases):

当输入的数据可以均匀的分配到每一个桶中

什么时候最慢(Worst Cases):

当输入的数据被分配到了同一个桶中

桶排序JavaScript代码实现:
function bucketSort(arr, bucketSize) {
    if (arr.length === 0) {
      return arr;
    }

    var i;
    var minValue = arr[0];
    var maxValue = arr[0];
    for (i = 1; i  maxValue) {
          maxValue = arr[i];                //输入数据的最大值
      }
    }

    //桶的初始化
    var DEFAULT_BUCKET_SIZE = 5;            //设置桶的默认数量为5
    bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;
    var bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;   
    var buckets = new Array(bucketCount);
    for (i = 0; i
登入後複製

基数排序(Radix Sort)

基数排序须知:

基数排序有两种方法:

  1. MSD 从高位开始进行排序
  2. LSD  从低位开始进行排序
基数排序 vs 计数排序 vs 桶排序

这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:
基数排序:根据键值的每位数字来分配桶
计数排序:每个桶只存储单一键值
桶排序:每个桶存储一定范围的数值


LSD基数排序动图演示:

JS 家的排序演算法 - 前端

Radix Sort 动图演示 算法可视化来源:http://visualgo.net/

基数排序JavaScript代码实现:
//LSD Radix Sort
var counter = [];
function radixSort(arr, maxDigit) {
    var mod = 10;
    var dev = 1;
    for (var i = 0; i
登入後複製

写在最后

排序算法实在是博大精深,还有hin多hin多我没有总结到或者我自己还没弄明白的算法,仅仅是总结这十种排序算法都把我写哭了。。。
因此,以后如果我掌握了更多的排序姿势,我一定还会回来的!

推荐教程:《javascript基础教程

以上是JS 家的排序演算法 - 前端的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

CLIP-BEVFormer:明確監督BEVFormer結構,提升長尾偵測性能 CLIP-BEVFormer:明確監督BEVFormer結構,提升長尾偵測性能 Mar 26, 2024 pm 12:41 PM

寫在前面&筆者的個人理解目前,在整個自動駕駛系統當中,感知模組扮演了其中至關重要的角色,行駛在道路上的自動駕駛車輛只有通過感知模組獲得到準確的感知結果後,才能讓自動駕駛系統中的下游規控模組做出及時、正確的判斷和行為決策。目前,具備自動駕駛功能的汽車中通常會配備包括環視相機感測器、光達感測器以及毫米波雷達感測器在內的多種數據資訊感測器來收集不同模態的信息,用於實現準確的感知任務。基於純視覺的BEV感知演算法因其較低的硬體成本和易於部署的特點,以及其輸出結果能便捷地應用於各種下游任務,因此受到工業

使用C++實現機器學習演算法:常見挑戰及解決方案 使用C++實現機器學習演算法:常見挑戰及解決方案 Jun 03, 2024 pm 01:25 PM

C++中機器學習演算法面臨的常見挑戰包括記憶體管理、多執行緒、效能最佳化和可維護性。解決方案包括使用智慧指標、現代線程庫、SIMD指令和第三方庫,並遵循程式碼風格指南和使用自動化工具。實作案例展示如何利用Eigen函式庫實現線性迴歸演算法,有效地管理記憶體和使用高效能矩陣操作。

探究C++sort函數的底層原理與演算法選擇 探究C++sort函數的底層原理與演算法選擇 Apr 02, 2024 pm 05:36 PM

C++sort函數底層採用歸併排序,其複雜度為O(nlogn),並提供不同的排序演算法選擇,包括快速排序、堆排序和穩定排序。

人工智慧可以預測犯罪嗎?探索CrimeGPT的能力 人工智慧可以預測犯罪嗎?探索CrimeGPT的能力 Mar 22, 2024 pm 10:10 PM

人工智慧(AI)與執法領域的融合為犯罪預防和偵查開啟了新的可能性。人工智慧的預測能力被廣泛應用於CrimeGPT(犯罪預測技術)等系統,用於預測犯罪活動。本文探討了人工智慧在犯罪預測領域的潛力、目前的應用情況、所面臨的挑戰以及相關技術可能帶來的道德影響。人工智慧和犯罪預測:基礎知識CrimeGPT利用機器學習演算法來分析大量資料集,識別可以預測犯罪可能發生的地點和時間的模式。這些資料集包括歷史犯罪統計資料、人口統計資料、經濟指標、天氣模式等。透過識別人類分析師可能忽視的趨勢,人工智慧可以為執法機構

改進的檢測演算法:用於高解析度光學遙感影像目標檢測 改進的檢測演算法:用於高解析度光學遙感影像目標檢測 Jun 06, 2024 pm 12:33 PM

01前景概要目前,難以在檢測效率和檢測結果之間取得適當的平衡。我們研究了一種用於高解析度光學遙感影像中目標偵測的增強YOLOv5演算法,利用多層特徵金字塔、多重偵測頭策略和混合注意力模組來提高光學遙感影像的目標偵測網路的效果。根據SIMD資料集,新演算法的mAP比YOLOv5好2.2%,比YOLOX好8.48%,在偵測結果和速度之間達到了更好的平衡。 02背景&動機隨著遠感技術的快速發展,高解析度光學遠感影像已被用於描述地球表面的許多物體,包括飛機、汽車、建築物等。目標檢測在遠感影像的解釋中

簡易JavaScript教學:取得HTTP狀態碼的方法 簡易JavaScript教學:取得HTTP狀態碼的方法 Jan 05, 2024 pm 06:08 PM

JavaScript教學:如何取得HTTP狀態碼,需要具體程式碼範例前言:在Web開發中,經常會涉及到與伺服器進行資料互動的場景。在與伺服器進行通訊時,我們經常需要取得傳回的HTTP狀態碼來判斷操作是否成功,並根據不同的狀態碼來進行對應的處理。本篇文章將教你如何使用JavaScript來取得HTTP狀態碼,並提供一些實用的程式碼範例。使用XMLHttpRequest

演算法在 58 畫像平台建置中的應用 演算法在 58 畫像平台建置中的應用 May 09, 2024 am 09:01 AM

一、58畫像平台建置背景首先和大家分享下58畫像平台的建造背景。 1.傳統的畫像平台傳統的想法已經不夠,建立用戶畫像平台依賴數據倉儲建模能力,整合多業務線數據,建構準確的用戶畫像;還需要數據挖掘,理解用戶行為、興趣和需求,提供演算法側的能力;最後,還需要具備數據平台能力,有效率地儲存、查詢和共享用戶畫像數據,提供畫像服務。業務自建畫像平台和中台類型畫像平台主要區別在於,業務自建畫像平台服務單條業務線,按需定制;中台平台服務多條業務線,建模複雜,提供更為通用的能力。 2.58中台畫像建構的背景58的使用者畫像

即時加SOTA一飛沖天! FastOcc:推理更快、部署友善Occ演算法來啦! 即時加SOTA一飛沖天! FastOcc:推理更快、部署友善Occ演算法來啦! Mar 14, 2024 pm 11:50 PM

寫在前面&筆者的個人理解在自動駕駛系統當中,感知任務是整個自駕系統中至關重要的組成部分。感知任務的主要目標是使自動駕駛車輛能夠理解和感知周圍的環境元素,如行駛在路上的車輛、路旁的行人、行駛過程中遇到的障礙物、路上的交通標誌等,從而幫助下游模組做出正確合理的決策和行為。在一輛具備自動駕駛功能的車輛中,通常會配備不同類型的信息採集感測器,如環視相機感測器、雷射雷達感測器以及毫米波雷達感測器等等,從而確保自動駕駛車輛能夠準確感知和理解周圍環境要素,使自動駕駛車輛在自主行駛的過程中能夠做出正確的決斷。目

See all articles