目錄
1.創建資料" >1.創建資料
#2.繪製影像" >#2.繪製影像
#3.繪製直方圖" >#3.繪製直方圖
4.線性擬合" >4.線性擬合
首頁 後端開發 Python教學 值得一看的Python高效能資料處理

值得一看的Python高效能資料處理

Jun 16, 2020 pm 05:31 PM
pandas python

值得一看的Python高效能資料處理

#值得一看的Python高效資料處理

Pandas是Python中非常常用的資料處理工具,使用起來非常方便。它建立在NumPy數組結構之上,因此它的許多操作透過NumPy或Pandas自帶的擴展模組編寫,這些模組用Cython編寫並編譯到C,並且在C上執行,因此也保證了處理速度。

今天我們就來體驗它的強大之處。

1.創建資料

使用pandas可以很方便地進行資料創建,現在讓我們建立一個5列1000行的pandas DataFrame:

mu1, sigma1 = 0, 0.1
mu2, sigma2 = 0.2, 0.2
n = 1000df = pd.DataFrame(
    {
        "a1": pd.np.random.normal(mu1, sigma1, n),
        "a2": pd.np.random.normal(mu2, sigma2, n),
        "a3": pd.np.random.randint(0, 5, n),
        "y1": pd.np.logspace(0, 1, num=n),
        "y2": pd.np.random.randint(0, 2, n),
    }
)
登入後複製
  • a1和a2:從常態(高斯)分佈中抽取的隨機樣本。
  • a3:0到4中的隨機整數。
  • y1:從0到1的對數刻度均勻分佈。
  • y2:0到1中的隨機整數。

產生如下所示的資料:

#2.繪製影像

Pandas 圖函數傳回一個matplotlib的座標軸(Axes),所以我們可以在上面自訂繪製我們所需要的內容。比如說畫一條垂線和平行線。這將非常有利於我們:

1.繪製平均線

2.標記重點的點

import matplotlib.pyplot as plt
ax = df.y1.plot()
ax.axhline(6, color="red", linestyle="--")
ax.axvline(775, color="red", linestyle="--")
plt.show()
登入後複製

我們也可以自訂一張圖上顯示多少表:

fig, ax = plt.subplots(2, 2, figsize=(14,7))
df.plot(x="index", y="y1", ax=ax[0, 0])
df.plot.scatter(x="index", y="y2", ax=ax[0, 1])
df.plot.scatter(x="index", y="a3", ax=ax[1, 0])
df.plot(x="index", y="a1", ax=ax[1, 1])
plt.show()
登入後複製

#3.繪製直方圖

Pandas能夠讓我們用非常簡單的方式獲得兩個圖形的形狀對比:

df[["a1", "a2"]].plot(bins=30, kind="hist")
plt.show()
登入後複製

#還能允許多圖繪製:

df[["a1", "a2"]].plot(bins=30, kind="hist", subplots=True)
plt.show()
登入後複製

當然,產生折線圖也不在畫下:

df[['a1', 'a2']].plot(by=df.y2, subplots=True)
plt.show()
登入後複製

4.線性擬合

Pandas還能用來擬合,讓我們用pandas找出一條與下圖最接近的直線:

#最小平方法計算和該直線最短距離:

df['ones'] = pd.np.ones(len(df))
m, c = pd.np.linalg.lstsq(df[['index', 'ones']], df['y1'], rcond=None)[0]
登入後複製

根據最小二乘的結果繪製y和擬合出來的直線:

df['y'] = df['index'].apply(lambda x: x * m + c)
df[['y', 'y1']].plot()
plt.show()
登入後複製

感謝大家的閱讀,希望大家收益多多。

本文轉自:https://blog.csdn.net/u010751000/article/details/106735872

推薦教學:《python教學

以上是值得一看的Python高效能資料處理的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1658
14
CakePHP 教程
1415
52
Laravel 教程
1309
25
PHP教程
1257
29
C# 教程
1231
24
PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

sublime怎麼運行代碼python sublime怎麼運行代碼python Apr 16, 2025 am 08:48 AM

在 Sublime Text 中運行 Python 代碼,需先安裝 Python 插件,再創建 .py 文件並編寫代碼,最後按 Ctrl B 運行代碼,輸出會在控制台中顯示。

vscode在哪寫代碼 vscode在哪寫代碼 Apr 15, 2025 pm 09:54 PM

在 Visual Studio Code(VSCode)中編寫代碼簡單易行,只需安裝 VSCode、創建項目、選擇語言、創建文件、編寫代碼、保存並運行即可。 VSCode 的優點包括跨平台、免費開源、強大功能、擴展豐富,以及輕量快速。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

See all articles