鄰近演算法,或K最近鄰(kNN,k-NearestNeighbor)分類演算法是資料探勘分類技術中最簡單的方法之一。所謂K最近鄰,就是k個最近的鄰居的意思,說的是每個樣本都可以用它最接近的k個鄰居來代表。
kNN演算法的核心思想是如果一個樣本在特徵空間中的k個最相鄰的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別,並具有這個類別上樣本的特性。此方法在決定分類決策上只依據最鄰近的一個或幾個樣本的類別來決定待分樣本所屬的類別。 kNN方法在類別決策時,只與極少量的相鄰樣本有關。由於kNN方法主要靠周圍有限的鄰近的樣本,而不是靠判別類域的方法來確定所屬類別的,因此對於類域的交叉或重疊較多的待分樣本集來說,kNN方法較其他方法更為適合。
上圖中,綠色圓要被決定賦予哪個類,是紅色三角形還是藍色四方形?如果K=3,由於紅色三角形所佔比例為2/3,綠色圓將被賦予紅色三角形那個類,如果K=5,由於藍色四方形比例為3/5,因此綠色圓被賦予藍色四方形類。
K最近鄰(k-Nearest Neighbor,KNN)分類演算法,是一個理論上比較成熟的方法,也是最簡單的機器學習演算法之一。方法的想法是:如果一個樣本在特徵空間中的k個最相似(即特徵空間中最鄰近)的樣本中的大多數屬於某一個類別,則該樣本也屬於這個類別。 KNN演算法中,所選的鄰居都是已經正確分類的物件。此方法在定類決策上只依據最鄰近的一個或幾個樣本的類別來決定待分樣本所屬的類別。 KNN方法雖然從原理上也依賴極限定理,但在類別決策時,只與極少量的相鄰樣本有關。由於KNN方法主要靠周圍有限的鄰近的樣本,而不是靠判別類域的方法來確定所屬類別的,因此對於類域的交叉或重疊較多的待分樣本集來說,KNN方法較其他方法更為適合。
KNN演算法不僅可以用於分類,還可以用於迴歸。透過找出一個樣本的k個最近鄰居,將這些鄰居的屬性的平均值賦給該樣本,就可以得到該樣本的屬性。更有用的方法是將不同距離的鄰居對該樣本產生的影響給予不同的權值(weight),如權值與距離成反比。
用 kNN 演算法預測豆瓣電影使用者的性別
摘要
本文認為不同性別的人偏好的電影類型會有所不同,因此進行了此實驗。利用較活躍的274位豆瓣用戶最近觀看的100部電影,對其類型進行統計,以得到的37種電影類型作為屬性特徵,以用戶性別作為標籤構建樣本集。使用kNN演算法建立豆瓣電影使用者性別分類器,使用樣本中的90%作為訓練樣本,10%作為測試樣本,準確率可達到81.48%。
實驗數據
本次實驗所用數據為豆瓣用戶標記的看過的電影,選取了274位豆瓣用戶最近看過的100部電影。對每個使用者的電影類型進行統計。本次實驗所用資料中共有37個電影類型,因此將這37個類型作為使用者的屬性特徵,各特徵的數值即為使用者100部電影中此類型電影的數量。使用者的標籤為其性別,由於豆瓣沒有使用者性別訊息,因此均為人工標註。
資料格式如下:
X1,1,X1,2,X1,3,X1,4……X1,36,X1,37,Y1 X2,1,X2,2,X2,3,X2,4……X2,36,X2,37,Y2 ………… X274,1,X274,2,X274,3,X274,4……X274,36,X274,37,Y274
範例:
0,0,0,3,1,34,5,0,0,0,11,31,0,0,38,40,0,0,15,8,3,9,14,2,3,0,4,1,1,15,0,0,1,13,0,0,1,1 0,1,0,2,2,24,8,0,0,0,10,37,0,0,44,34,0,0,3,0,4,10,15,5,3,0,0,7,2,13,0,0,2,12,0,0,0,0
像这样的数据一共有274行,表示274个样本。每一个的前37个数据是该样本的37个特征值,最后一个数据为标签,即性别:0表示男性,1表示女性。
在此次试验中取样本的前10%作为测试样本,其余作为训练样本。
首先对所有数据归一化。对矩阵中的每一列求取最大值(max_j)、最小值(min_j),对矩阵中的数据X_j,
X_j=(X_j-min_j)/(max_j-min_j) 。
然后对于每一条测试样本,计算其与所有训练样本的欧氏距离。测试样本i与训练样本j之间的距离为:
distance_i_j=sqrt((Xi,1-Xj,1)^2+(Xi,2-Xj,2)^2+……+(Xi,37-Xj,37)^2) ,
对样本i的所有距离从小到大排序,在前k个中选择出现次数最多的标签,即为样本i的预测值。
实验结果
首先选择一个合适的k值。 对于k=1,3,5,7,均使用同一个测试样本和训练样本,测试其正确率,结果如下表所示。
选取不同k值的正确率表
由上述结果可知,在k=3时,测试的平均正确率最高,为74.07%,最高可以达到81.48%。
上述不同的测试集均来自同一样本集中,为随机选取所得。
Python代码
这段代码并非原创,来自《机器学习实战》(Peter Harrington,2013),并有所改动。
#coding:utf-8 from numpy import * import operator def classify0(inX, dataSet, labels, k): dataSetSize = dataSet.shape[0] diffMat = tile(inX, (dataSetSize,1)) - dataSet sqDiffMat = diffMat**2 sqDistances = sqDiffMat.sum(axis=1) distances = sqDistances**0.5 sortedDistIndicies = distances.argsort() classCount={} for i in range(k): voteIlabel = labels[sortedDistIndicies[i]] classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 sortedClassCount = sorted(classCount.iteritems(), key=operator.itemgetter(1), reverse=True) return sortedClassCount[0][0] def autoNorm(dataSet): minVals = dataSet.min(0) maxVals = dataSet.max(0) ranges = maxVals - minVals normDataSet = zeros(shape(dataSet)) m = dataSet.shape[0] normDataSet = dataSet - tile(minVals, (m,1)) normDataSet = normDataSet/tile(ranges, (m,1)) #element wise divide return normDataSet, ranges, minVals def file2matrix(filename): fr = open(filename) numberOfLines = len(fr.readlines()) #get the number of lines in the file returnMat = zeros((numberOfLines,37)) #prepare matrix to return classLabelVector = [] #prepare labels return fr = open(filename) index = 0 for line in fr.readlines(): line = line.strip() listFromLine = line.split(',') returnMat[index,:] = listFromLine[0:37] classLabelVector.append(int(listFromLine[-1])) index += 1 fr.close() return returnMat,classLabelVector def genderClassTest(): hoRatio = 0.10 #hold out 10% datingDataMat,datingLabels = file2matrix('doubanMovieDataSet.txt') #load data setfrom file normMat,ranges,minVals=autoNorm(datingDataMat) m = normMat.shape[0] numTestVecs = int(m*hoRatio) testMat=normMat[0:numTestVecs,:] trainMat=normMat[numTestVecs:m,:] trainLabels=datingLabels[numTestVecs:m] k=3 errorCount = 0.0 for i in range(numTestVecs): classifierResult = classify0(testMat[i,:],trainMat,trainLabels,k) print "the classifier came back with: %d, the real answer is: %d" % (classifierResult, datingLabels[i]) if (classifierResult != datingLabels[i]): errorCount += 1.0 print "Total errors:%d" %errorCount print "The total accuracy rate is %f" %(1.0-errorCount/float(numTestVecs))