首頁 > 後端開發 > Python教學 > python如何比較影像的區別

python如何比較影像的區別

coldplay.xixi
發布: 2020-08-29 11:34:30
原創
4476 人瀏覽過

python比較影像的區別方法:首先使用【pylab.imread】讀取圖片;然後使用【matplotlib.pylab - plt.imshow】顯示圖片;接著灰階圖與RGB圖相互轉換;最後儲存圖片即可。

python如何比較影像的區別

相關學習推薦:#python教學##】

python對比圖像的區別方法:

一、讀取圖片

#pylab.imread和PIL.Image.open讀入的都是RBG順序,

而cv2.imread讀入的是BGR順序,混合使用的時候要特備注意

1 matplotlib.pylab

import pylab as plt
import numpy as np
img = plt.imread('examples.png')
print(type(img), img.dtype, np.min(img), np.max(img))
[out]
(<type &#39;numpy.ndarray&#39;>, dtype(&#39;float32&#39;), 0.0, 1.0)    # matplotlib读取进来的图片是float,0-1
登入後複製

2 PIL.image. open

from PIL import Image
import numpy as np
img = Image.open(&#39;examples.png&#39;)
print(type(img), np.min(img), np.max(img))
img = np.array(img)     # 将PIL格式图片转为numpy格式
print(type(img), img.dtype, np.min(img), np.max(img))
[out]
(<class &#39;PIL.PngImagePlugin.PngImageFile&#39;>, 0, 255)    # 注意,PIL是有自己的数据结构的,但是可以转换成numpy数组
(<type &#39;numpy.ndarray&#39;>, dtype(&#39;uint8&#39;), 0, 255)    # 和用matplotlib读取不同,PIL和matlab相同,读进来图片和其存储在硬盘的样子是一样的,uint8,0-255
登入後複製

3 cv2.imread

import cv2
import numpy as np
img = cv2.imread(&#39;examples.png&#39;)    # 默认是读入为彩色图,即使原图是灰度图也会复制成三个相同的通道变成彩色图
img_gray = cv2.imread(&#39;examples.png&#39;, 0)    # 第二个参数为0的时候读入为灰度图,即使原图是彩色图也会转成灰度图
print(type(img), img.dtype, np.min(img), np.max(img))
print(img.shape)
print(img_gray.shape)
[out]
(<type &#39;numpy.ndarray&#39;>, dtype(&#39;uint8&#39;), 0, 255)    # opencv读进来的是numpy数组,类型是uint8,0-255
(824, 987, 3)    # 彩色图3通道
(824, 987)    # 灰度图单通道
登入後複製
import cv2
import pylab as plt
from PIL import Image
import numpy as np
img_plt = plt.imread(&#39;examples.png&#39;)
img_pil = Image.open(&#39;examples.png&#39;)
img_cv = cv2.imread(&#39;examples.png&#39;)
print(img_plt[125, 555, :])
print(np.array(img_pil)[125, 555, :] / 255.0)
print(img_cv[125, 555, :] / 255.0)
[out]
[ 0.61176473  0.3764706   0.29019609]
[ 0.61176471  0.37647059  0.29019608]
[ 0.29019608  0.37647059  0.61176471]    # opencv的是BGR顺序
登入後複製

#二、顯示圖片

1、

matplotlib.pylab - plt.imshow# ,這個函數的其實就是將一個numpy陣列格式的RGB影像顯示出來

import pylab as plt
import numpy as np
img = plt.imread(&#39;examples.png&#39;)
plt.imshow(img) 
plt.show()
登入後複製
import pylab as plt
from PIL import Image
import numpy as np
img = Image.open(&#39;examples.png&#39;)
img_gray = img.convert(&#39;L&#39;)    #转换成灰度图像
img = np.array(img)
img_gray = np.array(img_gray)
plt.imshow(img)    # or plt.imshow(img / 255.0),matplotlib和matlab一样,如果是float类型的图像,范围是0-1才能正常imshow,如果是uint8图像,范围则需要是0-255
plt.show()
plt.imshow(img_gray, cmap=plt.gray())    # 显示灰度图要设置cmap参数
plt.show()
plt.imshow(Image.open(&#39;examples.png&#39;))    # 实际上plt.imshow可以直接显示PIL格式图像
plt.show()
登入後複製
import pylab as plt
import cv2
import numpy as np
img = cv2.imread(&#39;examples.png&#39;)
plt.imshow(img[..., -1::-1])    # 因为opencv读取进来的是bgr顺序呢的,而imshow需要的是rgb顺序,因此需要先反过来
plt.show()
登入後複製

2 cv2顯示圖片

r​​rreee

三、灰階圖-RGB圖互相轉換

1 PIL.Image

import cv2
image2=cv2.imread(r"test/aaa/0002/0002_0_1.jpg")
cv2.imshow("1",image2)
cv2.waitKey(0)
登入後複製

2 cv2(注意,opencv在讀入圖片的時候就可以透過參數實現顏色通道的轉換,以下是用別的方式實現)

from PIL import Image
img = Image.open(&#39;examples.png&#39;)
img_gray = img.convert(&#39;L&#39;)    # RGB转换成灰度图像
img_rgb = img_gray.convert(&#39;RGB&#39;) # 灰度转RGB
print(img)
print(img_gray)
print(img_rgb)
[out]
<PIL.PngImagePlugin.PngImageFile image mode=RGB size=987x824 at 0x7FC2CCAE04D0>
<PIL.Image.Image image mode=L size=987x824 at 0x7FC2CCAE0990>
<PIL.Image.Image image mode=RGB size=987x824 at 0x7FC2CCAE0250>
登入後複製

四、儲存圖片

1 PIL.image - 儲存PIL格式的圖片

r​​rreee

2 cv2.imwrite - 儲存numpy格式的圖片

import cv2
import pylab as plt
img = cv2.imread(&#39;examples.png&#39;)
img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)    # BGR转灰度
img_bgr = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2BGR)    # 灰度转BRG
img_rgb = cv2.cvtColor(img_gray, cv2.COLOR_GRAY2RGB)    # 也可以灰度转RGB
登入後複製

想了解更多相關學習,請關注

php培訓欄位!

#

以上是python如何比較影像的區別的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:php.cn
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
作者最新文章
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板