目錄
簡介
準備
EXPLAIN 輸出格式
表示查詢涉及的表或衍生表
type 类型的性能比较
possible_keys
key
key_len
rows
Extra
首頁 資料庫 mysql教程 介紹MySQL的效能優化神器 Explain

介紹MySQL的效能優化神器 Explain

Dec 08, 2020 pm 05:26 PM
explain mysql 效能最佳化

MySQL教學專欄介紹效能優化神器Explain

介紹MySQL的效能優化神器 Explain

#更多相關免費學習推薦:mysql教學 (影片)

簡介

MySQL 提供了一個EXPLAIN 指令, 它可以對SELECT 語句進行分析, 並輸出SELECT 執行的詳細資訊, 以供開發人員針對性優化.
EXPLAIN 指令用法十分簡單, 在SELECT 語句前加上Explain 就可以了, 例如:

EXPLAIN SELECT * from user_info WHERE  id < 300;
登入後複製

準備

#為了接下來方便示範EXPLAIN 的使用, 首先我們需要建立兩個測試用的表, 並添加對應的資料:

CREATE TABLE `user_info` (
  `id`   BIGINT(20)  NOT NULL AUTO_INCREMENT,
  `name` VARCHAR(50) NOT NULL DEFAULT &#39;&#39;,
  `age`  INT(11)              DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `name_index` (`name`)
)
  ENGINE = InnoDB
  DEFAULT CHARSET = utf8

INSERT INTO user_info (name, age) VALUES (&#39;xys&#39;, 20);
INSERT INTO user_info (name, age) VALUES (&#39;a&#39;, 21);
INSERT INTO user_info (name, age) VALUES (&#39;b&#39;, 23);
INSERT INTO user_info (name, age) VALUES (&#39;c&#39;, 50);
INSERT INTO user_info (name, age) VALUES (&#39;d&#39;, 15);
INSERT INTO user_info (name, age) VALUES (&#39;e&#39;, 20);
INSERT INTO user_info (name, age) VALUES (&#39;f&#39;, 21);
INSERT INTO user_info (name, age) VALUES (&#39;g&#39;, 23);
INSERT INTO user_info (name, age) VALUES (&#39;h&#39;, 50);
INSERT INTO user_info (name, age) VALUES (&#39;i&#39;, 15);
登入後複製
CREATE TABLE `order_info` (
  `id`           BIGINT(20)  NOT NULL AUTO_INCREMENT,
  `user_id`      BIGINT(20)           DEFAULT NULL,
  `product_name` VARCHAR(50) NOT NULL DEFAULT &#39;&#39;,
  `productor`    VARCHAR(30)          DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)
)
  ENGINE = InnoDB
  DEFAULT CHARSET = utf8

INSERT INTO order_info (user_id, product_name, productor) VALUES (1, &#39;p1&#39;, &#39;WHH&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, &#39;p2&#39;, &#39;WL&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (1, &#39;p1&#39;, &#39;DX&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, &#39;p1&#39;, &#39;WHH&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (2, &#39;p5&#39;, &#39;WL&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (3, &#39;p3&#39;, &#39;MA&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (4, &#39;p1&#39;, &#39;WHH&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (6, &#39;p1&#39;, &#39;WHH&#39;);
INSERT INTO order_info (user_id, product_name, productor) VALUES (9, &#39;p8&#39;, &#39;TE&#39;);
登入後複製

EXPLAIN 輸出格式

EXPLAIN 指令的輸出內容大致如下:

mysql> explain select * from user_info where id = 2\G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: user_info
   partitions: NULL
         type: const
possible_keys: PRIMARY
          key: PRIMARY
      key_len: 8
          ref: const
         rows: 1
     filtered: 100.00
        Extra: NULL
1 row in set, 1 warning (0.00 sec)
登入後複製
登入後複製
登入後複製

各列的意義如下:

  • id: SELECT 查詢的識別碼. 每個SELECT 都會自動分配一個唯一的識別碼.
  • select_type: SELECT 查詢的類型.
  • table: 查詢的是哪個表格
  • partitions: 匹配的分區
  • ##type: join 類型
  • possible_keys: 此查詢中可能選取的索引
  • key: 此查詢中確切使用到的索引.
  • ref: 哪個欄位或常數與key 一起被使用
  • rows: 顯示此查詢一共掃描了多少行. 這是一個估計值.
  • filtered: 表示此查詢條件所過濾的資料的百分比
  • extra: 額外的資訊
  • ##接下來我們來重點看一下比較重要的幾個字段.

select_type

select_type

表示了查詢的類型, 它的常用取值有:

SIMPLE, 表示此查詢不包含UNION 查詢或子查詢
  • PRIMARY, 表示此查詢是最外層的查詢
  • UNION, 表示此查詢是UNION 的第二或隨後的查詢
  • DEPENDENT UNION, UNION 中的第二個或後面的查詢語句, 取決於外面的查詢
  • UNION RESULT, UNION 的結果
  • #SUBQUERY,子查詢中的第一個SELECT
  • DEPENDENT SUBQUERY: 子查詢中的第一個SELECT, 取決於外面的查詢.即子查詢依賴外層查詢的結果.
  • #最常見的查詢類別應該是
SIMPLE

了, 例如當我們的查詢沒有子查詢, 也沒有UNION 查詢時, 那麼通常就是SIMPLE 類型, 例如: <div class="code" style="position:relative; padding:0px; margin:0px;"><div class="code" style="position:relative; padding:0px; margin:0px;"><div class="code" style="position:relative; padding:0px; margin:0px;"><pre class="brush:php;toolbar:false">mysql&gt; explain select * from user_info where id = 2\G *************************** 1. row ***************************            id: 1   select_type: SIMPLE         table: user_info    partitions: NULL          type: const possible_keys: PRIMARY           key: PRIMARY       key_len: 8           ref: const          rows: 1      filtered: 100.00         Extra: NULL 1 row in set, 1 warning (0.00 sec)</pre><div class="contentsignin">登入後複製</div></div><div class="contentsignin">登入後複製</div></div><div class="contentsignin">登入後複製</div></div>如果我們使用了UNION 查詢, 那麼EXPLAIN 輸出的結果類似如下:

mysql> EXPLAIN (SELECT * FROM user_info  WHERE id IN (1, 2, 3))
    -> UNION
    -> (SELECT * FROM user_info WHERE id IN (3, 4, 5));
+----+--------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-----------------+
| id | select_type  | table      | partitions | type  | possible_keys | key     | key_len | ref  | rows | filtered | Extra           |
+----+--------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-----------------+
|  1 | PRIMARY      | user_info  | NULL       | range | PRIMARY       | PRIMARY | 8       | NULL |    3 |   100.00 | Using where     |
|  2 | UNION        | user_info  | NULL       | range | PRIMARY       | PRIMARY | 8       | NULL |    3 |   100.00 | Using where     |
| NULL | UNION RESULT | <union1,2> | NULL       | ALL   | NULL          | NULL    | NULL    | NULL | NULL |     NULL | Using temporary |
+----+--------------+------------+------------+-------+---------------+---------+---------+------+------+----------+-----------------+
3 rows in set, 1 warning (0.00 sec)
登入後複製

table

表示查詢涉及的表或衍生表

#type

type

字段比較重要, 它提供了判斷查詢是否高效的重要依據依據. 通過type 字段, 我們判斷此次查詢是全表掃描索引掃描 等.##type 常用型別

type 常用的取值有:

##system: 表中只有一條資料. 這個類型是特殊的

const

類型.
  • const: 針對主鍵或唯一索引的等值查詢掃描, 最多只返回一行資料. const 查詢速度非常快, 因為它僅僅讀取一次即可.例如下面的這個查詢, 它使用了主鍵索引, 因此type
  • 就是
  • const
    類型的.
    mysql> explain select * from user_info where id = 2\G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: user_info
       partitions: NULL
             type: const
    possible_keys: PRIMARY
              key: PRIMARY
          key_len: 8
              ref: const
             rows: 1
         filtered: 100.00
            Extra: NULL
    1 row in set, 1 warning (0.00 sec)
    登入後複製
    登入後複製
    登入後複製
    eq_ref: 此類型通常出現在多表的join 查詢,  表示對於前表的每一個結果, 都只能匹配到後表的一行結果. 並且查詢的比較操作通常是
  • =
, 查詢效率較高. 例如:
  • mysql> EXPLAIN SELECT * FROM user_info, order_info WHERE user_info.id = order_info.user_id\G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: order_info
       partitions: NULL
             type: index
    possible_keys: user_product_detail_index
              key: user_product_detail_index
          key_len: 314
              ref: NULL
             rows: 9
         filtered: 100.00
            Extra: Using where; Using index
    *************************** 2. row ***************************
               id: 1
      select_type: SIMPLE
            table: user_info
       partitions: NULL
             type: eq_ref
    possible_keys: PRIMARY
              key: PRIMARY
          key_len: 8
              ref: test.order_info.user_id
             rows: 1
         filtered: 100.00
            Extra: NULL
    2 rows in set, 1 warning (0.00 sec)
    登入後複製
    ref: 此類型通常出現在多表的join 查詢, 針對於非唯一或非主鍵索引, 或是使用了
  • 最左前綴
規則索引的查詢.
    例如下面這個範例中, 就使用到了
  • ref 類型的查詢:
    mysql> EXPLAIN SELECT * FROM user_info, order_info WHERE user_info.id = order_info.user_id AND order_info.user_id = 5\G
    *************************** 1. row ***************************
               id: 1
      select_type: SIMPLE
            table: user_info
       partitions: NULL
             type: const
    possible_keys: PRIMARY
              key: PRIMARY
          key_len: 8
              ref: const
             rows: 1
         filtered: 100.00
            Extra: NULL
    *************************** 2. row ***************************
               id: 1
      select_type: SIMPLE
            table: order_info
       partitions: NULL
             type: ref
    possible_keys: user_product_detail_index
              key: user_product_detail_index
          key_len: 9
              ref: const
             rows: 1
         filtered: 100.00
            Extra: Using index
    2 rows in set, 1 warning (0.01 sec)
    登入後複製
    range: 表示使用索引範圍查詢, 透過索引欄位範圍取得表格中部分資料記錄. 這個型別通常出現在=, <>, >, >=, <, <=, IS NULL, <=> , BETWEEN, IN() 操作中.
type
  • range
    時, 那麼EXPLAIN 輸出的ref 欄位為NULL, 並且key_len 欄位是此次查詢中使用到的索引的最長的那個.例如下面的例子就是一個範圍查詢:<div class="code" style="position:relative; padding:0px; margin:0px;"><pre class="brush:php;toolbar:false">mysql&gt; EXPLAIN SELECT *     -&gt;         FROM user_info     -&gt;         WHERE id BETWEEN 2 AND 8 \G *************************** 1. row ***************************            id: 1   select_type: SIMPLE         table: user_info    partitions: NULL          type: range possible_keys: PRIMARY           key: PRIMARY       key_len: 8           ref: NULL          rows: 7      filtered: 100.00         Extra: Using where 1 row in set, 1 warning (0.00 sec)</pre><div class="contentsignin">登入後複製</div></div>
    index: 表示全索引掃描(full index scan), 和ALL 類型類似, 只不過ALL 類型是全表掃描, 而index 類型則僅掃描所有的索引, 而不掃描資料.
  • index 類型通常出現在: 所要查詢的資料直接在索引樹中就可以取得到, 而不需要掃描資料. 當是這種情況時, Extra 欄位會顯示
Using index
    .

  • ##例如:<div class="code" style="position:relative; padding:0px; margin:0px;"><pre class="brush:php;toolbar:false">mysql&gt; EXPLAIN SELECT name FROM  user_info \G *************************** 1. row ***************************            id: 1   select_type: SIMPLE         table: user_info    partitions: NULL          type: index possible_keys: NULL           key: name_index       key_len: 152           ref: NULL          rows: 10      filtered: 100.00         Extra: Using index 1 row in set, 1 warning (0.00 sec)</pre><div class="contentsignin">登入後複製</div></div>上面的例子中, 我們查詢的name 欄位恰好是一個索引, 因此我們直接從索引中獲取資料就可以滿足查詢的需求了, 而不需要查詢表中的資料. 因此這樣的情況下, type 的值是
  • index
, 而Extra 的值是

Using index

.

  • ALL: 表示全表扫描, 这个类型的查询是性能最差的查询之一. 通常来说, 我们的查询不应该出现 ALL 类型的查询, 因为这样的查询在数据量大的情况下, 对数据库的性能是巨大的灾难. 如一个查询是 ALL 类型查询, 那么一般来说可以对相应的字段添加索引来避免.
    下面是一个全表扫描的例子, 可以看到, 在全表扫描时, possible_keys 和 key 字段都是 NULL, 表示没有使用到索引, 并且 rows 十分巨大, 因此整个查询效率是十分低下的.
mysql> EXPLAIN SELECT age FROM  user_info WHERE age = 20 \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: user_info
   partitions: NULL
         type: ALL
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 10
     filtered: 10.00
        Extra: Using where
1 row in set, 1 warning (0.00 sec)
登入後複製

type 类型的性能比较

通常来说, 不同的 type 类型的性能关系如下:
ALL < index < range ~ index_merge < ref < eq_ref < const < system
ALL 类型因为是全表扫描, 因此在相同的查询条件下, 它是速度最慢的.
index 类型的查询虽然不是全表扫描, 但是它扫描了所有的索引, 因此比 ALL 类型的稍快.
后面的几种类型都是利用了索引来查询数据, 因此可以过滤部分或大部分数据, 因此查询效率就比较高了.

possible_keys

possible_keys 表示 MySQL 在查询时, 能够使用到的索引. 注意, 即使有些索引在 possible_keys 中出现, 但是并不表示此索引会真正地被 MySQL 使用到. MySQL 在查询时具体使用了哪些索引, 由 key 字段决定.

key

此字段是 MySQL 在当前查询时所真正使用到的索引.

key_len

表示查询优化器使用了索引的字节数. 这个字段可以评估组合索引是否完全被使用, 或只有最左部分字段被使用到.
key_len 的计算规则如下:

  • 字符串
  • char(n): n 字节长度
  • varchar(n): 如果是 utf8 编码, 则是 3 * n + 2字节; 如果是 utf8mb4 编码, 则是 4 * n + 2 字节.
  • 数值类型:
  • TINYINT: 1字节
  • SMALLINT: 2字节
  • MEDIUMINT: 3字节
  • INT: 4字节
  • BIGINT: 8字节
  • 时间类型
  • DATE: 3字节
  • TIMESTAMP: 4字节
  • DATETIME: 8字节
  • 字段属性: NULL 属性 占用一个字节. 如果一个字段是 NOT NULL 的, 则没有此属性.

我们来举两个简单的栗子:

mysql> EXPLAIN SELECT * FROM order_info WHERE user_id < 3 AND product_name = &#39;p1&#39; AND productor = &#39;WHH&#39; \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: range
possible_keys: user_product_detail_index
          key: user_product_detail_index
      key_len: 9
          ref: NULL
         rows: 5
     filtered: 11.11
        Extra: Using where; Using index
1 row in set, 1 warning (0.00 sec)
登入後複製

上面的例子是从表 order_info 中查询指定的内容, 而我们从此表的建表语句中可以知道, 表 order_info 有一个联合索引:

KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)
登入後複製

不过此查询语句 WHERE user_id < 3 AND product_name = &#39;p1&#39; AND productor = &#39;WHH&#39; 中, 因为先进行 user_id 的范围查询, 而根据 最左前缀匹配 原则, 当遇到范围查询时, 就停止索引的匹配, 因此实际上我们使用到的索引的字段只有 user_id, 因此在 EXPLAIN 中, 显示的 key_len 为 9. 因为 user_id 字段是 BIGINT, 占用 8 字节, 而 NULL 属性占用一个字节, 因此总共是 9 个字节. 若我们将user_id 字段改为 BIGINT(20) NOT NULL DEFAULT &#39;0&#39;, 则 key_length 应该是8.

上面因为 最左前缀匹配 原则, 我们的查询仅仅使用到了联合索引的 user_id 字段, 因此效率不算高.

接下来我们来看一下下一个例子:

mysql> EXPLAIN SELECT * FROM order_info WHERE user_id = 1 AND product_name = 'p1' \G;
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: ref
possible_keys: user_product_detail_index
          key: user_product_detail_index
      key_len: 161
          ref: const,const
         rows: 2
     filtered: 100.00
        Extra: Using index
1 row in set, 1 warning (0.00 sec)<p>这次的查询中, 我们没有使用到范围查询, key_len 的值为 161. 为什么呢? 因为我们的查询条件 <code>WHERE user_id = 1 AND product_name = 'p1'</code> 中, 仅仅使用到了联合索引中的前两个字段, 因此 <code>keyLen(user_id) + keyLen(product_name) = 9 + 50 * 3 + 2 = 161</code></p>
<h3 id="rows">rows</h3>
<p>rows 也是一个重要的字段. MySQL 查询优化器根据统计信息, 估算 SQL 要查找到结果集需要扫描读取的数据行数.<br>这个值非常直观显示 SQL 的效率好坏, 原则上 rows 越少越好.</p>
<h3 id="Extra">Extra</h3>
<p>EXplain 中的很多额外的信息会在 Extra 字段显示, 常见的有以下几种内容:</p>
<ul><li>Using filesort<br>当 Extra 中有 <code>Using filesort</code> 时, 表示 MySQL 需额外的排序操作, 不能通过索引顺序达到排序效果. 一般有 <code>Using filesort</code>, 都建议优化去掉, 因为这样的查询 CPU 资源消耗大.<br>例如下面的例子:</li></ul>
<pre class="brush:php;toolbar:false">mysql> EXPLAIN SELECT * FROM order_info ORDER BY product_name \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: index
possible_keys: NULL
          key: user_product_detail_index
      key_len: 253
          ref: NULL
         rows: 9
     filtered: 100.00
        Extra: Using index; Using filesort
1 row in set, 1 warning (0.00 sec)
登入後複製

我们的索引是

KEY `user_product_detail_index` (`user_id`, `product_name`, `productor`)
登入後複製

但是上面的查询中根据 product_name 来排序, 因此不能使用索引进行优化, 进而会产生 Using filesort.
如果我们将排序依据改为 ORDER BY user_id, product_name, 那么就不会出现 Using filesort 了. 例如:

mysql> EXPLAIN SELECT * FROM order_info ORDER BY user_id, product_name \G
*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: order_info
   partitions: NULL
         type: index
possible_keys: NULL
          key: user_product_detail_index
      key_len: 253
          ref: NULL
         rows: 9
     filtered: 100.00
        Extra: Using index
1 row in set, 1 warning (0.00 sec)
登入後複製
  • Using index
    "覆盖索引扫描", 表示查询在索引树中就可查找所需数据, 不用扫描表数据文件, 往往说明性能不错
  • Using temporary
    查询有使用临时表, 一般出现于排序, 分组和多表 join 的情况, 查询效率不高, 建议优化.

相关免费推荐:编程视频课程

以上是介紹MySQL的效能優化神器 Explain的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
威爾R.E.P.O.有交叉遊戲嗎?
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

mysql:簡單的概念,用於輕鬆學習 mysql:簡單的概念,用於輕鬆學習 Apr 10, 2025 am 09:29 AM

MySQL是一個開源的關係型數據庫管理系統。 1)創建數據庫和表:使用CREATEDATABASE和CREATETABLE命令。 2)基本操作:INSERT、UPDATE、DELETE和SELECT。 3)高級操作:JOIN、子查詢和事務處理。 4)調試技巧:檢查語法、數據類型和權限。 5)優化建議:使用索引、避免SELECT*和使用事務。

phpmyadmin怎麼打開 phpmyadmin怎麼打開 Apr 10, 2025 pm 10:51 PM

可以通過以下步驟打開 phpMyAdmin:1. 登錄網站控制面板;2. 找到並點擊 phpMyAdmin 圖標;3. 輸入 MySQL 憑據;4. 點擊 "登錄"。

MySQL:世界上最受歡迎的數據庫的簡介 MySQL:世界上最受歡迎的數據庫的簡介 Apr 12, 2025 am 12:18 AM

MySQL是一種開源的關係型數據庫管理系統,主要用於快速、可靠地存儲和檢索數據。其工作原理包括客戶端請求、查詢解析、執行查詢和返回結果。使用示例包括創建表、插入和查詢數據,以及高級功能如JOIN操作。常見錯誤涉及SQL語法、數據類型和權限問題,優化建議包括使用索引、優化查詢和分錶分區。

為什麼要使用mysql?利益和優勢 為什麼要使用mysql?利益和優勢 Apr 12, 2025 am 12:17 AM

選擇MySQL的原因是其性能、可靠性、易用性和社區支持。 1.MySQL提供高效的數據存儲和檢索功能,支持多種數據類型和高級查詢操作。 2.採用客戶端-服務器架構和多種存儲引擎,支持事務和查詢優化。 3.易於使用,支持多種操作系統和編程語言。 4.擁有強大的社區支持,提供豐富的資源和解決方案。

redis怎麼使用單線程 redis怎麼使用單線程 Apr 10, 2025 pm 07:12 PM

Redis 使用單線程架構,以提供高性能、簡單性和一致性。它利用 I/O 多路復用、事件循環、非阻塞 I/O 和共享內存來提高並發性,但同時存在並發性受限、單點故障和不適合寫密集型工作負載的局限性。

MySQL和SQL:開發人員的基本技能 MySQL和SQL:開發人員的基本技能 Apr 10, 2025 am 09:30 AM

MySQL和SQL是開發者必備技能。 1.MySQL是開源的關係型數據庫管理系統,SQL是用於管理和操作數據庫的標準語言。 2.MySQL通過高效的數據存儲和檢索功能支持多種存儲引擎,SQL通過簡單語句完成複雜數據操作。 3.使用示例包括基本查詢和高級查詢,如按條件過濾和排序。 4.常見錯誤包括語法錯誤和性能問題,可通過檢查SQL語句和使用EXPLAIN命令優化。 5.性能優化技巧包括使用索引、避免全表掃描、優化JOIN操作和提升代碼可讀性。

MySQL的位置:數據庫和編程 MySQL的位置:數據庫和編程 Apr 13, 2025 am 12:18 AM

MySQL在數據庫和編程中的地位非常重要,它是一個開源的關係型數據庫管理系統,廣泛應用於各種應用場景。 1)MySQL提供高效的數據存儲、組織和檢索功能,支持Web、移動和企業級系統。 2)它使用客戶端-服務器架構,支持多種存儲引擎和索引優化。 3)基本用法包括創建表和插入數據,高級用法涉及多表JOIN和復雜查詢。 4)常見問題如SQL語法錯誤和性能問題可以通過EXPLAIN命令和慢查詢日誌調試。 5)性能優化方法包括合理使用索引、優化查詢和使用緩存,最佳實踐包括使用事務和PreparedStatemen

SQL刪除行後如何恢復數據 SQL刪除行後如何恢復數據 Apr 09, 2025 pm 12:21 PM

直接從數據庫中恢復被刪除的行通常是不可能的,除非有備份或事務回滾機制。關鍵點:事務回滾:在事務未提交前執行ROLLBACK可恢復數據。備份:定期備份數據庫可用於快速恢復數據。數據庫快照:可創建數據庫只讀副本,在數據誤刪後恢復數據。慎用DELETE語句:仔細檢查條件,避免誤刪數據。使用WHERE子句:明確指定要刪除的數據。使用測試環境:在執行DELETE操作前進行測試。

See all articles