數據分析方法有哪幾種
資料分析方法有4種,分別是:1、趨勢分析,趨勢分析一般用於核心指標的長期追蹤;2、象限分析,可依據資料的不同,將各個比較主體劃分到四個象限中;3、對比分析,分為橫向對比和縱向對比;4、交叉分析,主要作用就是從多個維度細分資料。
本文操作環境:windows10系統、thinkpad t480電腦。
科學技術的更新與網路的快速發展,推動著大數據時代的來臨,每天各行各業都在產生數量無法預估的資料片段。只有在合理的時間內擷取、管理、處理、整理這些龐大的資料庫,才能幫助企業取得自己想要的數據,以便更好地提出經營管理對策。
數據分析更多的是基於業務背景來解讀數據,把隱藏的數據背後資訊提煉和總結出來,發現其中有價值的內容。
由於這個過程中,數據是客觀的,人是主管的。同樣的數據不同的人解讀出來的結論可能是不一樣的,甚至是完全相反的,但結論本身沒有對錯,所以從客觀的數據到主觀的人,需要有一些科學的分析方法作為橋樑,幫助數據的資訊更好、更全面、更快的傳遞。
資料分析的常用方法
1、趨勢分析
#當資料很多,而我們又想從資料更快、更方便來發現數據資訊的時候,這個時候需要藉助圖形的力量,所謂圖形的力量,就是藉助EXCEl或其他畫圖工具把他畫出來。
趨勢分析一般用於核心指標的長期跟踪,例如:點擊率、GMV、活躍用戶數。一般做成簡單的數據趨勢圖,但光製作成數據趨勢圖還不算分析,必須像上面一樣,數據有那些趨勢上的變化,有沒有周期性,有沒有拐點,並分析背後的原因,無論是內在原因還是外在原因。趨勢分析最好的產出是比值。有環比、同比、定基比。例如2017年4月比3月GDP成長了多少,這就是環比,季比反映了最近變化的趨勢,但有季節性的影響。為了消除季節性的影響,推出了年比,例如:2017年4月份比2016年的4月GDP成長了多少,這就是年比。定基比就更好理解,就是固定某個基點,例如將2017年1月份的數據作為基點,定基比則為2017年5月份的數據和2017年1月份的數據做比較。
2、象限分析
依據資料的不同,將各個比較主體分割到4個象限。如果把智商和情緒智商進行劃分,就可以劃分為兩個維度四個像限,每個人都有自己所屬的象限。一般來說,智商保證一個人的下限,情商提升一個人的上限。
一個先前實際工作中用過的象限分析法的例子。一般p2p產品註冊用戶都是有第三方管道引流的,如果按照流量來源的質量和數量可以劃分四個像限,然後選取一個固定時間點,比較各個渠道的流量性價比,質量可以用留存的總額這個維度作標準。對於高品質高數量的渠道繼續保持,對於高品質低數量的渠道擴大引入數量,低質量低數量pass,低質量高數量嘗試一下投放的策略和要求,這樣的象限分析可以讓我們在對比分析的時候得到一個非常直覺和快速的結果。
3、比較分析
橫向對比:橫向對比就是跟自己比。最常見的數據指標就是需要跟目標值比,來回答我們有沒有完成目標;跟我們上個月比,來回答我們環北成長了多少。
縱向對比:簡單來說就是跟他人比。我們要跟競爭對手比,來回答我們在市場中的份額和地位是怎樣的。
很多人可能會說,比較分析聽起來也很簡單麼。那我舉個例子,有個電商的簽到頁面,昨天它的pv是5000,你聽到這樣的數據有啥感受?
你不會有任何感受,如果說這個簽到頁面的平均PV是10000,表示昨天出現了重大問題,如果說簽到頁面的平均pv是2000,則昨天有個躍升,數據只有對比,才能產生意義。
4、交叉分析
比較分析既有橫向對比,又有縱向對比。如果既想橫向對比,又想縱向對比,就有了交叉分析法。交叉分析法就是將資料從多個維度進行交叉展現,並進行多角度的結合分析。
在分析app資料的時候,通常會分ios和安卓來看。
交叉分析的主要作用是從多個維度細分數據,從中發現最相關的維度來探索數據變化的原因。
說明:
趨勢、對比、象限、交叉包含了資料分析最基礎的部分。無論是數據核實、或數據分析,找趨勢、做比較、劃象限、做細分,數據才能發揮應有的作用。
推薦:《程式設計影片》
以上是數據分析方法有哪幾種的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

DDREASE是一種用於從檔案或區塊裝置(如硬碟、SSD、RAM磁碟、CD、DVD和USB儲存裝置)復原資料的工具。它將資料從一個區塊設備複製到另一個區塊設備,留下損壞的資料區塊,只移動好的資料區塊。 ddreasue是一種強大的恢復工具,完全自動化,因為它在恢復操作期間不需要任何干擾。此外,由於有了ddasue地圖文件,它可以隨時停止和恢復。 DDREASE的其他主要功能如下:它不會覆寫恢復的數據,但會在迭代恢復的情況下填補空白。但是,如果指示工具明確執行此操作,則可以將其截斷。將資料從多個檔案或區塊還原到單

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

如果您需要了解如何在Excel中使用具有多個條件的篩選功能,以下教學將引導您完成對應步驟,確保您可以有效地篩選資料和排序資料。 Excel的篩選功能是非常強大的,能夠幫助您從大量資料中提取所需的資訊。這個功能可以根據您設定的條件,過濾資料並只顯示符合條件的部分,讓資料的管理變得更有效率。透過使用篩選功能,您可以快速找到目標數據,節省了尋找和整理數據的時間。這個功能不僅可以應用在簡單的資料清單上,還可以根據多個條件進行篩選,幫助您更精準地定位所需資訊。總的來說,Excel的篩選功能是一個非常實用的

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

哭死啊,全球狂煉大模型,一網路的資料不夠用,根本不夠用。訓練模型搞得跟《飢餓遊戲》似的,全球AI研究者,都在苦惱怎麼才能餵飽這群資料大胃王。尤其在多模態任務中,這問題尤其突出。一籌莫展之際,來自人大系的初創團隊,用自家的新模型,率先在國內把「模型生成數據自己餵自己」變成了現實。而且還是理解側和生成側雙管齊下,兩側都能產生高品質、多模態的新數據,對模型本身進行數據反哺。模型是啥?中關村論壇上剛露面的多模態大模型Awaker1.0。團隊是誰?智子引擎。由人大高瓴人工智慧學院博士生高一鑷創立,高

這週,由OpenAI、微軟、貝佐斯和英偉達投資的機器人公司FigureAI宣布獲得接近7億美元的融資,計劃在未來一年內研發出可獨立行走的人形機器人。而特斯拉的擎天柱也屢屢傳出好消息。沒人懷疑,今年會是人形機器人爆發的一年。一家位於加拿大的機器人公司SanctuaryAI最近發布了一款全新的人形機器人Phoenix。官方號稱它能以和人類一樣的速率自主完成許多工作。世界上第一台能以人類速度自主完成任務的機器人Pheonix可以輕輕地抓取、移動並優雅地將每個物件放置在它的左右兩側。它能夠自主辨識物體的

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺