目錄
問題一:一個檔案含有5億行,每行是一個隨機整數,需要對該檔案所有整數排序。
1.分割 & 排序
首頁 後端開發 Python教學 一文了解大文件排序/外存排序問題

一文了解大文件排序/外存排序問題

Jul 14, 2021 pm 02:01 PM

問題一:一個檔案含有5億行,每行是一個隨機整數,需要對該檔案所有整數排序。

分治(pide&Conquer),參考大數據演算法:對5億資料進行排序

對這個一個500000000行的total.txt 進行排序,該檔案大小4.6G。

每讀10000行就排序並寫入到一個新的子檔案裡(這裡使用的是快速排序)。

1.分割 & 排序

#!/usr/bin/python2.7

import time

def readline_by_yield(bfile):
    with open(bfile, 'r') as rf:
        for line in rf:
            yield line

def quick_sort(lst):
    if len(lst) < 2:
        return lst
    pivot = lst[0]
    left = [ ele for ele in lst[1:] if ele < pivot ]
    right = [ ele for ele in lst[1:] if ele >= pivot ]
    return quick_sort(left) + [pivot,] + quick_sort(right)

def split_bfile(bfile):
    count = 0
    nums = []
    for line in readline_by_yield(bfile):
        num = int(line)
        if num not in nums:
            nums.append(num)
        if 10000 == len(nums):
            nums = quick_sort(nums)
            with open(&#39;subfile/subfile{}.txt&#39;.format(count+1),&#39;w&#39;) as wf:
                wf.write(&#39;\n&#39;.join([ str(i) for i in nums ]))
            nums[:] = []
            count += 1
            print count

now = time.time()
split_bfile(&#39;total.txt&#39;)
run_t = time.time()-now
print &#39;Runtime : {}&#39;.format(run_t)
登入後複製

 會產生 50000 個小文件,每個小文件大小約在 96K左右。

 程式在執行過程中,記憶體佔用一直處在 5424kB #左右

#整個檔案分割完耗時 

94146

秒。

2.合併

#!/usr/bin/python2.7
# -*- coding: utf-8 -*-

import os
import time

testdir = &#39;/ssd/subfile&#39;

now = time.time() 

# Step 1 : 获取全部文件描述符
fds = []
for f in os.listdir(testdir):
    ff = os.path.join(testdir,f)
    fds.append(open(ff,&#39;r&#39;))

# Step 2 : 每个文件获取第一行,即当前文件最小值
nums = []
tmp_nums = []
for fd in fds:
    num = int(fd.readline())
    tmp_nums.append(num)

# Step 3 : 获取当前最小值放入暂存区,并读取对应文件的下一行;循环遍历。
count = 0
while 1:
    val = min(tmp_nums)
    nums.append(val)
    idx = tmp_nums.index(val)
    next = fds[idx].readline()
    # 文件读完了
    if not next:
        del fds[idx]
        del tmp_nums[idx]
    else:
        tmp_nums[idx] = int(next)
    # 暂存区保存1000个数,一次性写入硬盘,然后清空继续读。
    if 1000 == len(nums):
        with open(&#39;final_sorted.txt&#39;,&#39;a&#39;) as wf:
            wf.write(&#39;\n&#39;.join([ str(i) for i in nums ]) + &#39;\n&#39;)
        nums[:] = []
    if 499999999 == count:
        break
    count += 1
   
with open(&#39;runtime.txt&#39;,&#39;w&#39;) as wf:
    wf.write(&#39;Runtime : {}&#39;.format(time.time()-now))
登入後複製

程式在執行過程中,記憶體佔用一直處在

 240M左右

跑了38個小時左右,才合併完不到5千萬行資料...

雖然降低了記憶體使用,但時間複雜度太高了;

可以透過減少檔案數(每個小檔案儲存行數增加)來進一步降低記憶體使用。 

問題二:一個檔案有一千億行數據,每行是IP位址,需要對IP位址進行排序。

IP位址轉換成數字

# 方法一:手动计算
 
In [62]: ip
Out[62]: &#39;10.3.81.150&#39;
 
In [63]: ip.split(&#39;.&#39;)[::-1]
Out[63]: [&#39;150&#39;, &#39;81&#39;, &#39;3&#39;, &#39;10&#39;]
 
In [64]: [ &#39;{}-{}&#39;.format(idx,num) for idx,num in enumerate(ip.split(&#39;.&#39;)[::-1]) ]
Out[64]: [&#39;0-150&#39;, &#39;1-81&#39;, &#39;2-3&#39;, &#39;3-10&#39;]
 
In [65]: [256**idx*int(num) for idx,num in enumerate(ip.split(&#39;.&#39;)[::-1])]
Out[65]: [150, 20736, 196608, 167772160]
 
In [66]: sum([256**idx*int(num) for idx,num in enumerate(ip.split(&#39;.&#39;)[::-1])])                     
Out[66]: 167989654 
In [67]:
 
# 方法二:使用C扩展库来计算
In [71]: import socket,struct
In [72]: socket.inet_aton(ip)
Out[72]: b&#39;\n\x03Q\x96&#39;
 
In [73]: struct.unpack("!I", socket.inet_aton(ip))
# !表示使用网络字节顺序解析, 后面的I表示unsigned int, 对应Python里的integer or long 
Out[73]: (167989654,)
 
In [74]: struct.unpack("!I", socket.inet_aton(ip))[0]
Out[74]: 167989654
 
In [75]: socket.inet_ntoa(struct.pack("!I", 167989654))              
Out[75]: &#39;10.3.81.150&#39;
 
In [76]:
登入後複製
問題三:有一個1.3GB的檔案(共一億行),裡面每一行都是一個字串,請在檔案中找出重複次數最多的字串。

基本概念

:迭代讀大文件,把大文件分割成多個小文件;最後再歸併這些小文件。

分割的規則

    迭代讀取大文件,記憶體中維護字典,key是字串,value是該字串出現的次數;

當字典維護的字串種類達到10000(可自訂)的時候,把該字典

依照key從小到大排序

,然後寫入小文件,每行是key\tvalue;

然後清空字典,繼續往下讀,直到大檔案讀完。

歸併的規則

    首先取得

全部小檔案的檔案描述子

,然後各自讀出第一行(即每個小檔案字串ascii值最小的字串),進行比較。

找出ascii值最小的字串,如果有重複的,這把各自出現的次數累加起來,然後把當前字串和總次數儲存到記憶體中的一個列表。

接著把最小字串所在的檔案的讀取指標向下移,也就是從對應小檔案再讀出一行進行下一輪比較。

當記憶體中的列表個數達到10000時,則一次把該列表內容寫到一個最終檔案儲存到硬碟上。同時清空列表,進行之後的比較。 一直到讀取完全部的小文件,那麼最後得到的最終文件就是一個按照字串ascii值升序排序的大的文件,每一行的內容就是字串\t重複次數
def readline_by_yield(bfile):
    with open(bfile, &#39;r&#39;) as rf:
        for line in rf:
            yield line

def split_bfile(bfile):
    count = 0
    d = {}
    for line in readline_by_yield(bfile):
        line = line.strip()
        if line not in d:
            d[line] = 0
        d[line] += 1
        if 10000 == len(d):
            text = &#39;&#39;
            for string in sorted(d):
                text += &#39;{}\t{}\n&#39;.format(string,d[string])
            with open(&#39;subfile/subfile{}.txt&#39;.format(count+1),&#39;w&#39;) as wf:
                wf.write(text.strip())
            d.clear()
            count += 1

    text = &#39;&#39;
    for string in sorted(d):
        text += &#39;{}\t{}\n&#39;.format(string,d[string])
    with open(&#39;subfile/subfile_end.txt&#39;,&#39;w&#39;) as wf:
        wf.write(text.strip())

split_bfile(&#39;bigfile.txt&#39;)
登入後複製
import os
import json
import time
import traceback

testdir = &#39;/ssd/subfile&#39;

now = time.time() 

# Step 1 : 获取全部文件描述符
fds = []
for f in os.listdir(testdir):
    ff = os.path.join(testdir,f)
    fds.append(open(ff,&#39;r&#39;))

# Step 2 : 每个文件获取第一行
tmp_strings = []
tmp_count = []
for fd in fds:
    line = fd.readline()
    string,count = line.strip().split(&#39;\t&#39;)
    tmp_strings.append(string)
    tmp_count.append(int(count))

# Step 3 : 获取当前最小值放入暂存区,并读取对应文件的下一行;循环遍历。
result = []
need2del = []

while True:
    min_str = min(tmp_strings)
    str_idx = [i for i,v in enumerate(tmp_strings) if v==min_str]
    str_count = sum([ int(tmp_count[idx]) for idx in str_idx ])
    result.append(&#39;{}\t{}\n&#39;.format(min_str,str_count))
    for idx in str_idx:
        next = fds[idx].readline()  # IndexError: list index out of range
        # 文件读完了
        if not next:
            need2del.append(idx)
        else:
            next_string,next_count = next.strip().split(&#39;\t&#39;)
            tmp_strings[idx] = next_string
            tmp_count[idx] = next_count
    # 暂存区保存10000个记录,一次性写入硬盘,然后清空继续读。
    if 10000 == len(result):
        with open(&#39;merged.txt&#39;,&#39;a&#39;) as wf:
            wf.write(&#39;&#39;.join(result))
        result[:] = []
    # 注意: 文件读完需要删除文件描述符的时候, 需要逆序删除
    need2del.reverse()
    for idx in need2del:
        del fds[idx]
        del tmp_strings[idx]
        del tmp_count[idx]
    need2del[:] = []
    if 0 == len(fds):
        break

with open(&#39;merged.txt&#39;,&#39;a&#39;) as wf:
    wf.write(&#39;&#39;.join(result))
result[:] = []
登入後複製
## 第一次#第二次
最後迭代去讀這個最終文件,找出重複次數最多的即可。 1. 分割2. 歸併歸併結果分析:
分割時記憶體中維護的字典大小分割的小檔案個數歸併時需維護的檔案描述子數歸併時記憶體佔用 歸併耗時
1000090009000 ~ 0 200M歸併速度慢,暫未統計完成時間
100000

900

900 ~ 0

27M######歸併速度快,只需2572秒#################3. 找出出現次數最多的字串及其次數######
import time

def read_line(filepath):
    with open(filepath,&#39;r&#39;) as rf:
        for line in rf:
            yield line

start_ts = time.time()

max_str = None
max_count = 0
for line in read_line(&#39;merged.txt&#39;):
    string,count = line.strip().split(&#39;\t&#39;)
    if int(count) > max_count:
        max_count = int(count)
        max_str = string

print(max_str,max_count)
print(&#39;Runtime {}&#39;.format(time.time()-start_ts))
登入後複製
###歸併後的檔案共9999788行,大小是256M;執行查找耗時27秒,記憶體佔用6480KB。  ###

以上是一文了解大文件排序/外存排序問題的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1665
14
CakePHP 教程
1424
52
Laravel 教程
1322
25
PHP教程
1270
29
C# 教程
1249
24
Python vs.C:申請和用例 Python vs.C:申請和用例 Apr 12, 2025 am 12:01 AM

Python适合数据科学、Web开发和自动化任务,而C 适用于系统编程、游戏开发和嵌入式系统。Python以简洁和强大的生态系统著称,C 则以高性能和底层控制能力闻名。

Python:遊戲,Guis等 Python:遊戲,Guis等 Apr 13, 2025 am 12:14 AM

Python在遊戲和GUI開發中表現出色。 1)遊戲開發使用Pygame,提供繪圖、音頻等功能,適合創建2D遊戲。 2)GUI開發可選擇Tkinter或PyQt,Tkinter簡單易用,PyQt功能豐富,適合專業開發。

Python與C:學習曲線和易用性 Python與C:學習曲線和易用性 Apr 19, 2025 am 12:20 AM

Python更易學且易用,C 則更強大但複雜。 1.Python語法簡潔,適合初學者,動態類型和自動內存管理使其易用,但可能導致運行時錯誤。 2.C 提供低級控制和高級特性,適合高性能應用,但學習門檻高,需手動管理內存和類型安全。

Python和時間:充分利用您的學習時間 Python和時間:充分利用您的學習時間 Apr 14, 2025 am 12:02 AM

要在有限的時間內最大化學習Python的效率,可以使用Python的datetime、time和schedule模塊。 1.datetime模塊用於記錄和規劃學習時間。 2.time模塊幫助設置學習和休息時間。 3.schedule模塊自動化安排每週學習任務。

Python vs.C:探索性能和效率 Python vs.C:探索性能和效率 Apr 18, 2025 am 12:20 AM

Python在開發效率上優於C ,但C 在執行性能上更高。 1.Python的簡潔語法和豐富庫提高開發效率。 2.C 的編譯型特性和硬件控制提升執行性能。選擇時需根據項目需求權衡開發速度與執行效率。

Python:自動化,腳本和任務管理 Python:自動化,腳本和任務管理 Apr 16, 2025 am 12:14 AM

Python在自動化、腳本編寫和任務管理中表現出色。 1)自動化:通過標準庫如os、shutil實現文件備份。 2)腳本編寫:使用psutil庫監控系統資源。 3)任務管理:利用schedule庫調度任務。 Python的易用性和豐富庫支持使其在這些領域中成為首選工具。

Python標準庫的哪一部分是:列表或數組? Python標準庫的哪一部分是:列表或數組? Apr 27, 2025 am 12:03 AM

pythonlistsarepartofthestAndArdLibrary,herilearRaysarenot.listsarebuilt-In,多功能,和Rused ForStoringCollections,而EasaraySaraySaraySaraysaraySaraySaraysaraySaraysarrayModuleandleandleandlesscommonlyusedDduetolimitedFunctionalityFunctionalityFunctionality。

學習Python:2小時的每日學習是否足夠? 學習Python:2小時的每日學習是否足夠? Apr 18, 2025 am 12:22 AM

每天學習Python兩個小時是否足夠?這取決於你的目標和學習方法。 1)制定清晰的學習計劃,2)選擇合適的學習資源和方法,3)動手實踐和復習鞏固,可以在這段時間內逐步掌握Python的基本知識和高級功能。

See all articles