mysql刪除資料時為什麼不使用delete

醉折花枝作酒筹
發布: 2021-07-21 09:28:26
轉載
2703 人瀏覽過

有些表的資料量成長很快,對應SQL掃描了很多無效數據,導致SQL慢了下來,經過確認之後,這些大表都是一些流水、記錄、日誌類型數據,只需要保留1到3個月,此時需要對錶做資料清理實現瘦身。

mysql刪除資料時為什麼不使用delete

這篇文章我會從InnoDB儲存空間分佈,delete對效能的影響,以及優化建議方面解釋為什麼不建議delete刪除資料。

InnoDB儲存架構

從這張圖可以看到,InnoDB儲存結構主要包含兩個部分:邏輯儲存結構和實體儲存結構。

邏輯上是由表空間tablespace —> 段segment或inode —> 區Extent ——>資料頁Page構成,Innodb邏輯管理單位是segment,空間分配的最小單位是extent,每個segment都會從表空間FREE_PAGE中分配32個page,當這32個page不夠用時,會按照以下原則進行擴展:如果當前小於1個extent,則擴展到1個extent;當表空間小於32MB時,每次擴充一個extent;表空間大於32MB,每次擴充4個extent。

物理上主要由系統使用者資料文件,日誌檔案組成,資料檔案主要儲存MySQL字典資料和使用者數據,日誌檔案記錄的是data page的變更記錄,用於MySQL Crash時的復原。

Innodb表空間

InnoDB儲存包含三類表空間:系統表空間,使用者表空間,Undo表空間。

系統表空間: 主要儲存MySQL內部的資料字典數據,如information_schema下的資料。

使用者表空間: 當開啟innodb_file_per_table=1時,資料表從系統表空間獨立出來儲存在以table_name.ibd指令的資料檔案中,結構資訊儲存在table_name.frm文件中。

Undo表空間: 儲存Undo訊息,如快照一致讀取和flashback都是利用undo資訊。

從MySQL 8.0開始允許使用者自訂表空間,具體語法如下:

CREATE TABLESPACE tablespace_name
    ADD DATAFILE 'file_name'               #数据文件名
    USE LOGFILE GROUP logfile_group        #自定义日志文件组,一般每组2个logfile。
    [EXTENT_SIZE [=] extent_size]          #区大小
    [INITIAL_SIZE [=] initial_size]        #初始化大小 
    [AUTOEXTEND_SIZE [=] autoextend_size]  #自动扩宽尺寸
    [MAX_SIZE [=] max_size]                #单个文件最大size,最大是32G。
    [NODEGROUP [=] nodegroup_id]           #节点组
    [WAIT]
    [COMMENT [=] comment_text]
    ENGINE [=] engine_name
登入後複製

這樣的好處是可以做到資料的冷熱分離,分別用HDD和SSD來存儲,既能實現資料的高效訪問,又能節省成本,例如可以添加兩塊500G硬碟,經過創建卷組vg,劃分邏輯卷lv,創建資料目錄並mount相應的lv,假設劃分的兩個目錄分別是/hot_data和/cold_data。

這樣就可以將核心的業務表如用戶表,訂單表儲存在高效能SSD盤上,一些日誌,流水錶儲存在普通的HDD上,主要的操作步驟如下:

#创建热数据表空间
create tablespace tbs_data_hot add datafile '/hot_data/tbs_data_hot01.dbf' max_size 20G;
#创建核心业务表存储在热数据表空间
create table booking(id bigint not null primary key auto_increment, …… ) tablespace tbs_data_hot;
#创建冷数据表空间
create tablespace tbs_data_cold add datafile '/hot_data/tbs_data_cold01.dbf' max_size 20G;
#创建日志,流水,备份类的表存储在冷数据表空间
create table payment_log(id bigint not null primary key auto_increment, …… ) tablespace tbs_data_cold;
#可以移动表到另一个表空间
alter table payment_log tablespace tbs_data_hot;
登入後複製

Inndob儲存分佈

建立空表查看空間變化

mysql> create table user(id bigint not null primary key auto_increment, 
    -> name varchar(20) not null default '' comment '姓名', 
    -> age tinyint not null default 0 comment 'age', 
    -> gender char(1) not null default 'M'  comment '性别',
    -> phone varchar(16) not null default '' comment '手机号',
    -> create_time datetime NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT '创建时间',
    -> update_time datetime NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT '修改时间'
    -> ) engine = InnoDB DEFAULT CHARSET=utf8mb4 COMMENT '用户信息表';
Query OK, 0 rows affected (0.26 sec)
登入後複製
# ls -lh user1.ibd 
-rw-r----- 1 mysql mysql 96K Nov  6 12:48 user.ibd
登入後複製

設定參數innodb_file_per_table=1時,建立表格時會自動建立一個segment,同時指派一個extent,包含32個data page的來儲存數據,這樣創建的空表預設大小就是96KB,extent使用完之後會申請64個連接頁,這樣對於一些小表,或者undo segment,可以在開始時申請較少的空間,節省磁碟容量的開銷。

# python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibd
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0000>
page offset 00000000, page type <Freshly Allocated Page>
page offset 00000000, page type <Freshly Allocated Page>
Total number of page: 6:      #总共分配的页数
Freshly Allocated Page: 2     #可用的数据页
Insert Buffer Bitmap: 1       #插入缓冲页
File Space Header: 1          #文件空间头
B-tree Node: 1                #数据页
File Segment inode: 1         #文件端inonde,如果是在ibdata1.ibd上会有多个inode。
登入後複製

插入資料後的空間變化

mysql> DELIMITER $$
mysql> CREATE PROCEDURE insert_user_data(num INTEGER) 
    -> BEGIN
    ->     DECLARE v_i int unsigned DEFAULT 0;
    -> set autocommit= 0;
    -> WHILE v_i < num DO
    ->    insert into user(`name`, age, gender, phone) values (CONCAT(&#39;lyn&#39;,v_i), mod(v_i,120), &#39;M&#39;, CONCAT(&#39;152&#39;,ROUND(RAND(1)*100000000)));
    ->  SET v_i = v_i+1;
    -> END WHILE;
    -> commit;
    -> END $$
Query OK, 0 rows affected (0.01 sec)
mysql> DELIMITER ;

#插入10w数据
mysql> call insert_user_data(100000);
Query OK, 0 rows affected (6.69 sec)
登入後複製
# ls -lh user.ibd
-rw-r----- 1 mysql mysql 14M Nov 6 10:58 /data2/mysql/test/user.ibd

# python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibd
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0001>   #增加了一个非叶子节点,树的高度从1变为2.
........................................................
page offset 00000000, page type <Freshly Allocated Page>
Total number of page: 896:
Freshly Allocated Page: 493
Insert Buffer Bitmap: 1
File Space Header: 1
B-tree Node: 400
File Segment inode: 1
登入後複製

delete資料後的空間變化

mysql> select min(id),max(id),count(*) from user;
+---------+---------+----------+
| min(id) | max(id) | count(*) |
+---------+---------+----------+
|       1 |  100000 |   100000 |
+---------+---------+----------+
1 row in set (0.05 sec)
#删除50000条数据,理论上空间应该从14MB变长7MB左右。
mysql> delete from user limit 50000;
Query OK, 50000 rows affected (0.25 sec)

#数据文件大小依然是14MB,没有缩小。
# ls -lh /data2/mysql/test/user1.ibd 
-rw-r----- 1 mysql mysql 14M Nov  6 13:22 /data2/mysql/test/user.ibd

#数据页没有被回收。
# python2 py_innodb_page_info.py -v /data2/mysql/test/user.ibd
page offset 00000000, page type <File Space Header>
page offset 00000001, page type <Insert Buffer Bitmap>
page offset 00000002, page type <File Segment inode>
page offset 00000003, page type <B-tree Node>, page level <0001>
........................................................
page offset 00000000, page type <Freshly Allocated Page>
Total number of page: 896:
Freshly Allocated Page: 493
Insert Buffer Bitmap: 1
File Space Header: 1
B-tree Node: 400
File Segment inode: 1
#在MySQL内部是标记删除,
登入後複製
mysql> use information_schema;

Database changed
mysql> SELECT A.SPACE AS TBL_SPACEID, A.TABLE_ID, A.NAME AS TABLE_NAME, FILE_FORMAT, ROW_FORMAT, SPACE_TYPE,  B.INDEX_ID , B.NAME AS INDEX_NAME, PAGE_NO, B.TYPE AS INDEX_TYPE FROM INNODB_SYS_TABLES A LEFT JOIN INNODB_SYS_INDEXES B ON A.TABLE_ID =B.TABLE_ID WHERE A.NAME = &#39;test/user1&#39;;
+-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+
| TBL_SPACEID | TABLE_ID | TABLE_NAME | FILE_FORMAT | ROW_FORMAT | SPACE_TYPE | INDEX_ID | INDEX_NAME | PAGE_NO | INDEX_TYPE |
+-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+
|        1283 |     1207 | test/user | Barracuda   | Dynamic    | Single     |     2236 | PRIMARY    |       3 |          3 |
+-------------+----------+------------+-------------+------------+------------+----------+------------+---------+------------+
1 row in set (0.01 sec)

PAGE_NO = 3 标识B-tree的root page是3号页,INDEX_TYPE = 3是聚集索引。 INDEX_TYPE取值如下:
0 = nonunique secondary index; 
1 = automatically generated clustered index (GEN_CLUST_INDEX); 
2 = unique nonclustered index; 
3 = clustered index; 
32 = full-text index;
#收缩空间再后进行观察
登入後複製

MySQL內部不會真正刪除空間,而且做標記刪除,即將delflag:N修改為delflag:Y,commit之後會被purge進入刪除鍊錶,如果下一次insert更大的記錄,delete之後的空間不會被重用,如果插入的記錄小於等於delete的記錄空會被重用,這塊內容可以透過知數堂的innblock工具來分析。

Innodb中的碎片

碎片的產生

我們知道資料儲存在檔案系統上的,總是無法100%利用分配給它的實體空間,刪除數據會在頁面上留下一些”空洞”,或者隨機寫入(聚集索引非線性增加)會導致頁分裂,頁分裂導致頁面的利用空間少於50%,另外對錶進行增刪改會引起對應的二等級索引值的隨機的增刪改,也會導致索引結構中的資料頁上留下一些"空洞",雖然這些空洞有可能會被重複利用,但終究會導致部分物理空間未被使用,也就是碎片。

同時,即便設定了填充因子為100%,Innodb也會主動留下page頁面1/16的空間作為預留使用(An innodb_fill_factor setting of 100 leaves 1/16 of the space in clustered index pages free for future index growth)防止update帶來的行溢位。

mysql> select table_schema,
    ->        table_name,ENGINE,
    ->        round(DATA_LENGTH/1024/1024+ INDEX_LENGTH/1024/1024) total_mb,TABLE_ROWS,
    ->        round(DATA_LENGTH/1024/1024) data_mb, round(INDEX_LENGTH/1024/1024) index_mb, round(DATA_FREE/1024/1024) free_mb, round(DATA_FREE/DATA_LENGTH*100,2) free_ratio
    -> from information_schema.TABLES where  TABLE_SCHEMA= &#39;test&#39;
    -> and TABLE_NAME= &#39;user&#39;;
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| table_schema | table_name | ENGINE | total_mb | TABLE_ROWS | data_mb | index_mb | free_mb | free_ratio |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| test         | user      | InnoDB |        4 |      50000 |       4 |        0 |       6 |     149.42 |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
1 row in set (0.00 sec)
登入後複製

其中data_free是分配了未使用的位元組數,並不能說明完全是碎片空間。

碎片的回收

對於InnoDB的表,可以透過以下指令來回收碎片,釋放空間,這個是隨機讀取IO操作,會比較耗時,也會阻塞表上正常的DML運行,同時需要佔用額外更多的磁碟空間,對於RDS來說,可能會導致磁碟空間瞬間爆滿,實例瞬間被鎖定,應用無法做DML操作,所以禁止在線上環境去執行。

#执行InnoDB的碎片回收
mysql> alter table user engine=InnoDB;
Query OK, 0 rows affected (9.00 sec)
Records: 0  Duplicates: 0  Warnings: 0

##执行完之后,数据文件大小从14MB降低到10M。
# ls -lh /data2/mysql/test/user1.ibd 
-rw-r----- 1 mysql mysql 10M Nov 6 16:18 /data2/mysql/test/user.ibd
登入後複製
mysql> select table_schema,        
    ->table_name,ENGINE,        
    ->round(DATA_LENGTH/1024/1024+ INDEX_LENGTH/1024/1024) total_mb,TABLE_ROWS,        
    ->round(DATA_LENGTH/1024/1024) data_mb, 
    ->round(INDEX_LENGTH/1024/1024) index_mb, 
    ->round(DATA_FREE/1024/1024) free_mb, 
    ->round(DATA_FREE/DATA_LENGTH*100,2) free_ratio from information_schema.TABLES where  TABLE_SCHEMA= &#39;test&#39; and TABLE_NAME= &#39;user&#39;;
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| table_schema | table_name | ENGINE | total_mb | TABLE_ROWS | data_mb | index_mb | free_mb | free_ratio |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
| test         | user      | InnoDB |        5 |      50000 |       5 |        0 |       2 |      44.29 |
+--------------+------------+--------+----------+------------+---------+----------+---------+------------+
1 row in set (0.00 sec)
登入後複製

delete对SQL的影响

未删除前的SQL执行情况

#插入100W数据
mysql> call insert_user_data(1000000);
Query OK, 0 rows affected (35.99 sec)

#添加相关索引
mysql> alter table user add index idx_name(name), add index idx_phone(phone);
Query OK, 0 rows affected (6.00 sec)
Records: 0  Duplicates: 0  Warnings: 0

#表上索引统计信息
mysql> show index from user;
+-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table | Non_unique | Key_name  | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| user  |          0 | PRIMARY   |            1 | id          | A         |      996757 |     NULL | NULL   |      | BTREE      |         |               |
| user  |          1 | idx_name  |            1 | name        | A         |      996757 |     NULL | NULL   |      | BTREE      |         |               |
| user  |          1 | idx_phone |            1 | phone       | A         |           2 |     NULL | NULL   |      | BTREE      |         |               |
+-------+------------+-----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
3 rows in set (0.00 sec)

#重置状态变量计数
mysql> flush status;
Query OK, 0 rows affected (0.00 sec)

#执行SQL语句
mysql> select id, age ,phone from user where name like &#39;lyn12%&#39;;
+--------+-----+-------------+
| id     | age | phone       |
+--------+-----+-------------+
|    124 |   3 | 15240540354 |
|   1231 |  30 | 15240540354 |
|  12301 |  60 | 15240540354 |
.............................
| 129998 |  37 | 15240540354 |
| 129999 |  38 | 15240540354 |
| 130000 |  39 | 15240540354 |
+--------+-----+-------------+
11111 rows in set (0.03 sec)

mysql> explain select id, age ,phone from user where name like &#39;lyn12%&#39;;
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
| id | select_type | table | type  | possible_keys | key      | key_len | ref  | rows  | Extra                 |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
|  1 | SIMPLE      | user  | range | idx_name      | idx_name | 82      | NULL | 22226 | Using index condition |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
1 row in set (0.00 sec)

#查看相关状态呢变量
mysql> select * from information_schema.session_status where variable_name in(&#39;Last_query_cost&#39;,&#39;Handler_read_next&#39;,&#39;Innodb_pages_read&#39;,&#39;Innodb_data_reads&#39;,&#39;Innodb_pages_read&#39;);
+-------------------+----------------+
| VARIABLE_NAME     | VARIABLE_VALUE |
+-------------------+----------------+
| HANDLER_READ_NEXT | 11111          |    #请求读的行数
| INNODB_DATA_READS | 7868409        |    #数据物理读的总数
| INNODB_PAGES_READ | 7855239        |    #逻辑读的总数
| LAST_QUERY_COST   | 10.499000      |    #SQL语句的成本COST,主要包括IO_COST和CPU_COST。
+-------------------+----------------+
4 rows in set (0.00 sec)
登入後複製

删除后的SQL执行情况

#删除50w数据
mysql> delete from user limit 500000;
Query OK, 500000 rows affected (3.70 sec)

#分析表统计信息
mysql> analyze table user;
+-----------+---------+----------+----------+
| Table     | Op      | Msg_type | Msg_text |
+-----------+---------+----------+----------+
| test.user | analyze | status   | OK       |
+-----------+---------+----------+----------+
1 row in set (0.01 sec)

#重置状态变量计数
mysql> flush status;
Query OK, 0 rows affected (0.01 sec)

mysql> select id, age ,phone from user where name like &#39;lyn12%&#39;;
Empty set (0.05 sec)

mysql> explain select id, age ,phone from user where name like &#39;lyn12%&#39;;
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
| id | select_type | table | type  | possible_keys | key      | key_len | ref  | rows  | Extra                 |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
|  1 | SIMPLE      | user  | range | idx_name      | idx_name | 82      | NULL | 22226 | Using index condition |
+----+-------------+-------+-------+---------------+----------+---------+------+-------+-----------------------+
1 row in set (0.00 sec)

mysql> select * from information_schema.session_status where variable_name in(&#39;Last_query_cost&#39;,&#39;Handler_read_next&#39;,&#39;Innodb_pages_read&#39;,&#39;Innodb_data_reads&#39;,&#39;Innodb_pages_read&#39;);
+-------------------+----------------+
| VARIABLE_NAME     | VARIABLE_VALUE |
+-------------------+----------------+
| HANDLER_READ_NEXT | 0              |
| INNODB_DATA_READS | 7868409        |
| INNODB_PAGES_READ | 7855239        |
| LAST_QUERY_COST   | 10.499000      |
+-------------------+----------------+
4 rows in set (0.00 sec)
登入後複製

结果统计分析

操作COST物理读次数逻辑读次数扫描行数返回行数执行时间
初始化插入100W10.49900078684097855239222261111130ms
100W随机删除50W10.4990007868409785523922226050ms

这也说明对普通的大表,想要通过delete数据来对表进行瘦身是不现实的,所以在任何时候不要用delete去删除数据,应该使用优雅的标记删除。

delete优化建议

控制业务账号权限

对于一个大的系统来说,需要根据业务特点去拆分子系统,每个子系统可以看做是一个service,例如美团APP,上面有很多服务,核心的服务有用户服务user-service,搜索服务search-service,商品product-service,位置服务location-service,价格服务price-service等。每个服务对应一个数据库,为该数据库创建单独账号,同时只授予DML权限且没有delete权限,同时禁止跨库访问。

#创建用户数据库并授权
create database mt_user charset utf8mb4;
grant USAGE, SELECT, INSERT, UPDATE ON mt_user.*  to &#39;w_user&#39;@&#39;%&#39; identified by &#39;t$W*g@gaHTGi123456&#39;;
flush privileges;
登入後複製

delete改为标记删除

在MySQL数据库建模规范中有4个公共字段,基本上每个表必须有的,同时在create_time列要创建索引,有两方面的好处:

  • 一些查询业务场景都会有一个默认的时间段,比如7天或者一个月,都是通过create_time去过滤,走索引扫描更快。

  • 一些核心的业务表需要以T +1的方式抽取数据仓库中,比如每天晚上00:30抽取前一天的数据,都是通过create_time过滤的。

`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT &#39;主键id&#39;,
`is_deleted` tinyint(4) NOT NULL DEFAULT &#39;0&#39; COMMENT &#39;是否逻辑删除:0:未删除,1:已删除&#39;,
`create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP COMMENT &#39;创建时间&#39;,
`update_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP COMMENT &#39;修改时间&#39;

#有了删除标记,业务接口的delete操作就可以转换为update
update user set is_deleted = 1 where user_id = 1213;

#查询的时候需要带上is_deleted过滤
select id, age ,phone from user where is_deleted = 0 and name like &#39;lyn12%&#39;;
登入後複製

数据归档方式

通用数据归档方法

#1. 创建归档表,一般在原表名后面添加_bak。
CREATE TABLE `ota_order_bak` (
  `id` bigint(11) NOT NULL AUTO_INCREMENT COMMENT &#39;主键&#39;,
  `order_id` varchar(255) DEFAULT NULL COMMENT &#39;订单id&#39;,
  `ota_id` varchar(255) DEFAULT NULL COMMENT &#39;ota&#39;,
  `check_in_date` varchar(255) DEFAULT NULL COMMENT &#39;入住日期&#39;,
  `check_out_date` varchar(255) DEFAULT NULL COMMENT &#39;离店日期&#39;,
  `hotel_id` varchar(255) DEFAULT NULL COMMENT &#39;酒店ID&#39;,
  `guest_name` varchar(255) DEFAULT NULL COMMENT &#39;顾客&#39;,
  `purcharse_time` timestamp NULL DEFAULT NULL COMMENT &#39;购买时间&#39;,
  `create_time` datetime DEFAULT NULL,
  `update_time` datetime DEFAULT NULL,
  `create_user` varchar(255) DEFAULT NULL,
  `update_user` varchar(255) DEFAULT NULL,
  `status` int(4) DEFAULT &#39;1&#39; COMMENT &#39;状态 : 1 正常 , 0 删除&#39;,
  `hotel_name` varchar(255) DEFAULT NULL,
  `price` decimal(10,0) DEFAULT NULL,
  `remark` longtext,
  PRIMARY KEY (`id`),
  KEY `IDX_order_id` (`order_id`) USING BTREE,
  KEY `hotel_name` (`hotel_name`) USING BTREE,
  KEY `ota_id` (`ota_id`) USING BTREE,
  KEY `IDX_purcharse_time` (`purcharse_time`) USING BTREE,
  KEY `IDX_create_time` (`create_time`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8
PARTITION BY RANGE (to_days(create_time)) ( 
PARTITION p201808 VALUES LESS THAN (to_days(&#39;2018-09-01&#39;)), 
PARTITION p201809 VALUES LESS THAN (to_days(&#39;2018-10-01&#39;)), 
PARTITION p201810 VALUES LESS THAN (to_days(&#39;2018-11-01&#39;)), 
PARTITION p201811 VALUES LESS THAN (to_days(&#39;2018-12-01&#39;)), 
PARTITION p201812 VALUES LESS THAN (to_days(&#39;2019-01-01&#39;)), 
PARTITION p201901 VALUES LESS THAN (to_days(&#39;2019-02-01&#39;)), 
PARTITION p201902 VALUES LESS THAN (to_days(&#39;2019-03-01&#39;)), 
PARTITION p201903 VALUES LESS THAN (to_days(&#39;2019-04-01&#39;)), 
PARTITION p201904 VALUES LESS THAN (to_days(&#39;2019-05-01&#39;)), 
PARTITION p201905 VALUES LESS THAN (to_days(&#39;2019-06-01&#39;)), 
PARTITION p201906 VALUES LESS THAN (to_days(&#39;2019-07-01&#39;)), 
PARTITION p201907 VALUES LESS THAN (to_days(&#39;2019-08-01&#39;)), 
PARTITION p201908 VALUES LESS THAN (to_days(&#39;2019-09-01&#39;)), 
PARTITION p201909 VALUES LESS THAN (to_days(&#39;2019-10-01&#39;)), 
PARTITION p201910 VALUES LESS THAN (to_days(&#39;2019-11-01&#39;)), 
PARTITION p201911 VALUES LESS THAN (to_days(&#39;2019-12-01&#39;)), 
PARTITION p201912 VALUES LESS THAN (to_days(&#39;2020-01-01&#39;)));

#2. 插入原表中无效的数据(需要跟开发同学确认数据保留范围)
create table tbl_p201808 as select * from ota_order where create_time between &#39;2018-08-01 00:00:00&#39; and &#39;2018-08-31 23:59:59&#39;;

#3. 跟归档表分区做分区交换
alter table ota_order_bak exchange partition p201808 with table tbl_p201808; 

#4. 删除原表中已经规范的数据
delete from ota_order where create_time between &#39;2018-08-01 00:00:00&#39; and &#39;2018-08-31 23:59:59&#39; limit 3000;
登入後複製

优化后的归档方式

#1. 创建中间表
CREATE TABLE `ota_order_2020` (........) ENGINE=InnoDB DEFAULT CHARSET=utf8
PARTITION BY RANGE (to_days(create_time)) ( 
PARTITION p201808 VALUES LESS THAN (to_days(&#39;2018-09-01&#39;)), 
PARTITION p201809 VALUES LESS THAN (to_days(&#39;2018-10-01&#39;)), 
PARTITION p201810 VALUES LESS THAN (to_days(&#39;2018-11-01&#39;)), 
PARTITION p201811 VALUES LESS THAN (to_days(&#39;2018-12-01&#39;)), 
PARTITION p201812 VALUES LESS THAN (to_days(&#39;2019-01-01&#39;)), 
PARTITION p201901 VALUES LESS THAN (to_days(&#39;2019-02-01&#39;)), 
PARTITION p201902 VALUES LESS THAN (to_days(&#39;2019-03-01&#39;)), 
PARTITION p201903 VALUES LESS THAN (to_days(&#39;2019-04-01&#39;)), 
PARTITION p201904 VALUES LESS THAN (to_days(&#39;2019-05-01&#39;)), 
PARTITION p201905 VALUES LESS THAN (to_days(&#39;2019-06-01&#39;)), 
PARTITION p201906 VALUES LESS THAN (to_days(&#39;2019-07-01&#39;)), 
PARTITION p201907 VALUES LESS THAN (to_days(&#39;2019-08-01&#39;)), 
PARTITION p201908 VALUES LESS THAN (to_days(&#39;2019-09-01&#39;)), 
PARTITION p201909 VALUES LESS THAN (to_days(&#39;2019-10-01&#39;)), 
PARTITION p201910 VALUES LESS THAN (to_days(&#39;2019-11-01&#39;)), 
PARTITION p201911 VALUES LESS THAN (to_days(&#39;2019-12-01&#39;)), 
PARTITION p201912 VALUES LESS THAN (to_days(&#39;2020-01-01&#39;)));

#2. 插入原表中有效的数据,如果数据量在100W左右可以在业务低峰期直接插入,如果比较大,建议采用dataX来做,可以控制频率和大小,之前我这边用Go封装了dataX可以实现自动生成json文件,自定义大小去执行。
insert into ota_order_2020 select * from ota_order where create_time between &#39;2020-08-01 00:00:00&#39; and &#39;2020-08-31 23:59:59&#39;;

#3. 表重命名
alter table ota_order rename to ota_order_bak;  
alter table ota_order_2020 rename to ota_order;
#4. 插入差异数据
insert into ota_order select * from ota_order_bak a where not exists (select 1 from ota_order b where a.id = b.id);
#5. ota_order_bak改造成分区表,如果表比较大不建议直接改造,可以先创建好分区表,通过dataX把导入进去即可。

#6. 后续的归档方法
#创建中间普遍表
create table ota_order_mid like ota_order;
#交换原表无效数据分区到普通表
alter table ota_order exchange partition p201808 with table ota_order_mid; 
##交换普通表数据到归档表的相应分区
alter table ota_order_bak exchange partition p201808 with table ota_order_mid;
登入後複製

这样原表和归档表都是按月的分区表,只需要创建一个中间普通表,在业务低峰期做两次分区交换,既可以删除无效数据,又能回收空,而且没有空间碎片,不会影响表上的索引及SQL的执行计划。

总结

通过从InnoDB存储空间分布,delete对性能的影响可以看到,delete物理删除既不能释放磁盘空间,而且会产生大量的碎片,导致索引频繁分裂,影响SQL执行计划的稳定性;

同时在碎片回收时,会耗用大量的CPU,磁盘空间,影响表上正常的DML操作。

在业务代码层面,应该做逻辑标记删除,避免物理删除;为了实现数据归档需求,可以用采用MySQL分区表特性来实现,都是DDL操作,没有碎片产生。

另外一个比较好的方案采用Clickhouse,对有生命周期的数据表可以使用Clickhouse存储,利用其TTL特性实现无效数据自动清理。

相关推荐:《mysql教程

以上是mysql刪除資料時為什麼不使用delete的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:csdn.net
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板