首頁 > 後端開發 > Golang > 大型迷惑現場之[]*T是什麼? *[]T是什麼? *[]*T又是什麼?

大型迷惑現場之[]*T是什麼? *[]T是什麼? *[]*T又是什麼?

醉折花枝作酒筹
發布: 2021-08-02 09:21:21
轉載
3239 人瀏覽過

最近看到一段十分詭異的程式碼,包含了“[]*T”“*[]T”和“*[]*T”,乍一看都是一樣的,但我們仔細觀察就發現他們的不同之處。今天我們就來介紹一下golong的“[]*T”“*[]T”和“*[]*T”,了解一下他們之間的不同,一起來看看

作為一個Go語言新手,看到一切」詭異「的程式碼都會感到好奇;例如我最近看到的幾個方法;偽代碼如下:

func FindA() ([]*T,error) {
}

func FindB() ([]T,error) {
}

func SaveA(data *[]T) error {
}

func SaveB(data *[]*T) error {
}
登入後複製

相信大部分剛入門Go 的新手看到這樣的程式碼也是一臉懵逼,其中最讓人疑惑的就是:

[]*T
*[]T
*[]*T
登入後複製

這樣對切片的聲明,先不看後面兩種寫法;單獨看[]*T 還是很好理解的:
該切片中存放的是所有T 的記憶體位址,會比存放T 本身來說更省空間,同時[]*T 在方法內部是可以修改T 的值,而[]T 是修改不了。

func TestSaveSlice(t *testing.T) {
    a := []T{{Name: "1"}, {Name: "2"}}
    for _, t2 := range a {
        fmt.Println(t2)
    }
    _ = SaveB(a)
    for _, t2 := range a {
        fmt.Println(t2)
    }

}
func SaveB(data []T) error {
    t := data[0]
    t.Name = "1233"
    return nil
}

type T struct {
    Name string
}
登入後複製

例如上述範例列印的是

{1}
{2}
{1}
{2}
登入後複製

只有將方法修改為

func SaveB(data []*T) error {
    t := data[0]
    t.Name = "1233"
    return nil
}
登入後複製

才能修改T 的值:

&{1}
&{2}
&{1233}
&{2}
登入後複製

範例

下面重點來看看[]*T 與*[]T 的區別,這裡寫了兩個append 函數:

func TestAppendA(t *testing.T) {
    x:=[]int{1,2,3}
    appendA(x)
    fmt.Printf("main %v\n", x)
}
func appendA(x []int) {
    x[0]= 100
    fmt.Printf("appendA %v\n", x)
}
登入後複製
登入後複製

先看第一種,輸出是結果是:

appendA [1000 2 3]
main [1000 2 3]
登入後複製

說明在函數傳遞過程中,函數內部的修改能夠影響到外部。


下面我們再看一個例子:

func appendB(x []int) {
    x = append(x, 4)
    fmt.Printf("appendA %v\n", x)
}
登入後複製

最終結果卻是:

appendA [1 2 3 4]
main [1 2 3]
登入後複製

沒有影響到外部。

而當我們再調整一下會發現又有所不同:

func TestAppendC(t *testing.T) {
    x:=[]int{1,2,3}
    appendC(&x)
    fmt.Printf("main %v\n", x)
}
func appendC(x *[]int) {
    *x = append(*x, 4)
    fmt.Printf("appendA %v\n", x)
}
登入後複製

最終的結果:

appendA &[1 2 3 4]
main [1 2 3 4]
登入後複製

可以發現如果傳遞切片的指標時,使用append 函數追加數據時會影響到外部。

slice 原理

在分析上面三種情況之前,我們先來了解下 slice 的資料結構。

直接查看原始碼會發現 slice 其實就是一個結構體,但不能直接對外存取。

原始碼位址runtime/slice.go

其中有三個重要的屬性:

屬性意思
array底層存放資料的數組,是指標。
len切片長度
#cap切片容量cap>=len

提到切片就不得不想到数组,可以这么理解:

切片是对数组的抽象,而数组则是切片的底层实现。

其实通过切片这个名字也不难看出,它就是从数组中切了一部分;相对于数组的固定大小,切片可以根据实际使用情况进行扩容。

所以切片也可以通过对数组"切一刀"获得:

x1:=[6]int{0,1,2,3,4,5}
x2 := x[1:4]
fmt.Println(len(x2), cap(x2))
登入後複製

其中 x1 的长度与容量都是6。

x2 的长度与容量则为3和5。

  • x2 的长度很容易理解。

  • 容量等于5可以理解为,当前这个切片最多可以使用的长度。

因为切片 x2 是对数组 x1 的引用,所以底层数组排除掉左边一个没有被引用的位置则是该切片最大的容量,也就是5。

同一个底层数组

以刚才的代码为例:

func TestAppendA(t *testing.T) {
    x:=[]int{1,2,3}
    appendA(x)
    fmt.Printf("main %v\n", x)
}
func appendA(x []int) {
    x[0]= 100
    fmt.Printf("appendA %v\n", x)
}
登入後複製
登入後複製

在函数传递过程中,main 中的 x 与 appendA 函数中的 x 切片所引用的是同个数组。

所以在函数中对 x[0]=100,main函数中也能获取到。

本质上修改的就是同一块内存数据。

值传递带来的误会

在上述例子中,在 appendB 中调用 append 函数追加数据后会发现 main 函数中并没有受到影响,这里我稍微调整了一下示例代码:

func TestAppendB(t *testing.T) {
    //x:=[]int{1,2,3}
    x := make([]int, 3,5)
    x[0] = 1
    x[1] = 2
    x[2] = 3
    appendB(x)
    fmt.Printf("main %v len=%v,cap=%v\n", x,len(x),cap(x))
}
func appendB(x []int) {
    x = append(x, 444)
    fmt.Printf("appendB %v len=%v,cap=%v\n", x,len(x),cap(x))
}
登入後複製
主要是修改了切片初始化方式,使得容量大于了长度,具体原因后续会说明。

输出结果如下:

appendB [1 2 3 444] len=4,cap=5
main [1 2 3] len=3,cap=5
登入後複製

main 函数中的数据看样子确实没有受到影响;但细心的朋友应该会注意到 appendB 函数中的 x 在 append() 之后长度 +1 变为了4。

而在 main 函数中长度又变回了3.

这个细节区别就是为什么 append() "看似" 没有生效的原因;至于为什么要说“看似”,再次调整了代码:

func TestAppendB(t *testing.T) {
    //x:=[]int{1,2,3}
    x := make([]int, 3,5)
    x[0] = 1
    x[1] = 2
    x[2] = 3
    appendB(x)
    fmt.Printf("main %v len=%v,cap=%v\n", x,len(x),cap(x))

    y:=x[0:cap(x)]
    fmt.Printf("y %v len=%v,cap=%v\n", y,len(y),cap(y))
}
登入後複製

在刚才的基础之上,以 append 之后的 x 为基础再做了一个切片;该切片的范围为 x 所引用数组的全部数据。

再来看看执行结果如何:

appendB [1 2 3 444] len=4,cap=5
main [1 2 3] len=3,cap=5
y [1 2 3 444 0] len=5,cap=5
登入後複製

会神奇的发现 y 将所有数据都打印出来,在 appendB 函数中追加的数据其实已经写入了数组中,但为什么 x 本身没有获取到呢?

看图就很容易理解了:

  • 在appendB中确实是对原始数组追加了数据,同时长度也增加了。

  • 但由于是值传递,所以 slice 这个结构体即便是修改了长度为4,也只是对复制的那个对象修改了长度,main 中的长度依然为3.

  • 由于底层数组是同一个,所以基于这个底层数组重新生成了一个完整长度的切片便能看到追加的数据了。

所以这里本质的原因是因为 slice 是一个结构体,传递的是值,不管方法里如何修改长度也不会影响到原有的数据(这里指的是长度和容量这两个属性)。

切片扩容

还有一个需要注意:

刚才特意提到这里的例子稍有改变,主要是将切片的容量设置超过了数组的长度;

如果不做这个特殊设置会怎么样呢?

func TestAppendB(t *testing.T) {
    x:=[]int{1,2,3}
    //x := make([]int, 3,5)
    x[0] = 1
    x[1] = 2
    x[2] = 3
    appendB(x)
    fmt.Printf("main %v len=%v,cap=%v\n", x,len(x),cap(x))

    y:=x[0:cap(x)]
    fmt.Printf("y %v len=%v,cap=%v\n", y,len(y),cap(y))
}
func appendB(x []int) {
    x = append(x, 444)
    fmt.Printf("appendB %v len=%v,cap=%v\n", x,len(x),cap(x))
}
登入後複製

输出结果:

appendB [1 2 3 444] len=4,cap=6
main [1 2 3] len=3,cap=3
y [1 2 3] len=3,cap=3
登入後複製

这时会发现 main 函数中的 y 切片数据也没有发生变化,这是为什么呢?

这是因为初始化 x 切片时长度和容量都为3,当在 appendB 函数中追加数据时,会发现没有位置了。

这时便会进行扩容:

  • 将老数据复制一份到新的数组中。

  • 追加数据。

  • 将新的数据内存地址返回给 appendB 中的 x .

同样的由于是值传递,所以 appendB 中的切片换了底层数组对 main 函数中的切片没有任何影响,也就导致最终 main 函数的数据没有任何变化了。

传递切片指针

有没有什么办法即便是在扩容时也能对外部产生影响呢?

func TestAppendC(t *testing.T) {
    x:=[]int{1,2,3}
    appendC(&x)
    fmt.Printf("main %v len=%v,cap=%v\n", x,len(x),cap(x))
}
func appendC(x *[]int) {
    *x = append(*x, 4)
    fmt.Printf("appendC %v\n", x)
}
登入後複製

输出结果为:

appendC &[1 2 3 4]
main [1 2 3 4] len=4,cap=6
登入後複製

这时外部的切片就能受到影响了,其实原因也很简单;

刚才也说了,因为 slice 本身是一个结构体,所以当我们传递指针时,就和平时自定义的 struct 在函数内部通过指针修改数据原理相同。

最终在 appendC 中的 x 的指针指向了扩容后的结构体,因为传递的是 main 函数中 x 的指针,所以同样的 main 函数中的 x 也指向了该结构体。

总结

所以总结一下:

  • 切片是对数组的抽象,同时切片本身也是一个结构体。

  • 参数传递时函数内部与外部引用的是同一个数组,所以对切片的修改会影响到函数外部。

  • 如果发生扩容,情况会发生变化,同时扩容会导致数据拷贝;所以要尽量预估切片大小,避免数据拷贝。

  • 對切片或陣列重新產生切片時,由於共享的是同一個底層數組,所以資料會互相影響,這點需要注意。

  • 切片也可以傳遞指針,但場景很少,還會帶來不必要的誤解;建議值傳值就好,長度和容量佔用不了多少記憶體。

相信使用過切片會發現非常類似於 Java  中的ArrayList,同樣是基於數組實現,也會擴容發生資料拷貝;這樣看來語言只是上層使用的選擇,一些通用的底層實作大家都差不多。

這時我們再看標題中的 []*T *[]T *[]*T 就會發現這幾個並沒有什麼聯繫,只是看起來很像容易唬人。

有需要的可以看golong教學喔

#

以上是大型迷惑現場之[]*T是什麼? *[]T是什麼? *[]*T又是什麼?的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:segmentfault.com
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板