首頁 > 資料庫 > MongoDB > 帶你聊聊MongoDB中豐富的索引類型

帶你聊聊MongoDB中豐富的索引類型

青灯夜游
發布: 2022-02-17 10:59:16
轉載
2811 人瀏覽過

這篇文章帶你了解MongoDB,介紹一下MongoDB中豐富的索引類型,希望對大家有幫助!

帶你聊聊MongoDB中豐富的索引類型

MongoDB的索引和MySql的索引的作用和最佳化要遵循的原則基本上相似,MySql索引類型基本上可以區分為:

  • 單鍵索引- 聯合索引
  • 主鍵索引(叢集索引) - 非主鍵索引(非叢集索引)

MongoDB中除了這些基礎的分類之外,還有一些特殊的索引類型,如: 數組索引| 稀疏索引| 地理空間索引| TTL索引等.

為了下面方便測試我們使用腳本插入以下資料

for(var i = 0;i < 100000;i++){
    db.users.insertOne({
        username: "user"+i,
        age: Math.random() * 100,
        sex: i % 2,
        phone: 18468150001+i
    });
}
登入後複製

單鍵索引

單鍵索引即索引的欄位只有一個,是最基礎的索引方式.

在集合中使用username欄位,建立單鍵索引,MongoDB會自動將這個索引命名為username_1

#
db.users.createIndex({username:1})
&#39;username_1&#39;
登入後複製

在建立索引後查看一下使用username欄位的查詢計畫,stageIXSCAN代表使用使用了索引掃描

db.users.find({username:"user40001"}).explain()
{ 
   queryPlanner: 
   { 
     winningPlan: 
     { 
        ......
        stage: &#39;FETCH&#39;,
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { username: 1 },
           indexName: &#39;username_1&#39;,
           ......
        } 
     }
     rejectedPlans: [] ,
   },
   ......
   ok: 1 
}
登入後複製

        在索引最佳化的原則當中,有很重要的原則就是索引要建立在基數高的的字段上,所謂基數就是一個字段上不重複數值的個數,即我們在創建users集合時年齡出現的數值是0-99那麼age這個欄位將會有100個不重複的數值,即age欄位的基數為100,而sex這個欄位只會出現0 | 1這個兩個值,即sex欄位的基礎是2,這是一個相當低的基數,在這種情況下,索引的效率並不高並且會導致索引失效.

下面就船艦一個sex字段索引,來查詢執行計劃會發現,查詢時是走的全表掃描,而沒有走相關索引.

db.users.createIndex({sex:1})
&#39;sex_1&#39;

db.users.find({sex:1}).explain()
{ 
  queryPlanner: 
  { 
     ......
     winningPlan: 
     { 
        stage: &#39;COLLSCAN&#39;,
        filter: { sex: { &#39;$eq&#39;: 1 } },
        direction: &#39;forward&#39; 
     },
     rejectedPlans: [] 
  },
  ......
  ok: 1 
}
登入後複製

聯合索引

#即索引上會有多個欄位,下面使用agesex兩個欄位建立一個索引

db.users.createIndex({age:1,sex:1})
&#39;age_1_sex_1&#39;
登入後複製

然後我們使用這兩個欄位進行一次查詢,檢視執行計畫,順利地走了這條索引

db.users.find({age:23,sex:1}).explain()
{ 
  queryPlanner: 
  { 
     ......
     winningPlan: 
     { 
        stage: &#39;FETCH&#39;,
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { age: 1, sex: 1 },
           indexName: &#39;age_1_sex_1&#39;,
           .......
           indexBounds: { age: [ &#39;[23, 23]&#39; ], sex: [ &#39;[1, 1]&#39; ] } 
        } 
     },
     rejectedPlans: [], 
  },
  ......
  ok: 1 
 }
登入後複製

數組索引

數組索引就是對數組字段創建索引,也叫做多值索引,下面為了​​測試將users集合中的資料增加一部分數組字段.

db.users.updateOne({username:"user1"},{$set:{hobby:["唱歌","篮球","rap"]}})
......
登入後複製

建立陣列索引並進行檢視其執行計劃,注意isMultiKey: true表示使用的索引是多值索引.

db.users.createIndex({hobby:1})
&#39;hobby_1&#39;

db.users.find({hobby:{$elemMatch:{$eq:"钓鱼"}}}).explain()
{ 
   queryPlanner: 
   { 
     ......
     winningPlan: 
     { 
        stage: &#39;FETCH&#39;,
        filter: { hobby: { &#39;$elemMatch&#39;: { &#39;$eq&#39;: &#39;钓鱼&#39; } } },
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { hobby: 1 },
           indexName: &#39;hobby_1&#39;,
           isMultiKey: true,
           multiKeyPaths: { hobby: [ &#39;hobby&#39; ] },
           ......
           indexBounds: { hobby: [ &#39;["钓鱼", "钓鱼"]&#39; ] } } 
         },
     rejectedPlans: [] 
  },
  ......
  ok: 1 
}
登入後複製

        陣列索引相比於其它索引來說索引條目和體積必然呈倍數增加,例如平均每個文檔的hobby數組的size為10,那麼這個集合的hobby數組索引的條目數量將是普通索引的10倍.

聯合數組索引

        聯合數組索引是含有數組字段的聯合索引,這種索引不支持一個索引中含有多個數組字段,即一個索引中最多能有一個數組字段,這是為了避免索引條目爆炸式增長,假設一個索引中有兩個數組字段,那麼這個索引條目的數量將是普通索引的n* m倍

地理空間索引

在原先的users集合上,增加一些地理資訊

for(var i = 0;i < 100000;i++){
    db.users.updateOne(
    {username:"user"+i},
    {
        $set:{
            location:{
                type: "Point",
                coordinates: [100+Math.random() * 4,40+Math.random() * 3]
            }
        }
    });
}
登入後複製

建立一個二維空間索引

db.users.createIndex({location:"2dsphere"})
&#39;location_2dsphere&#39;

//查询500米内的人
db.users.find({
  location:{
    $near:{
      $geometry:{type:"Point",coordinates:[102,41.5]},
      $maxDistance:500
    }
  }
})
登入後複製

地理空間索引的type有很多包含Ponit(點) | LineString(線) | Polygon (多邊形)

TTL索引

        TTL的全拼法是time to live,主要用於過期資料自動刪除,使用這種索引需要在文檔中聲明一個時間類型的字段,然後為這個字段創建TTL索引的時候還需要設置一個expireAfterSeconds過期時間單位為秒,創建完成後MongoDB會定期對集合中的資料進行檢查,當出現:

#目前時間T##T L索引欄位時間>expi reAfte##rSrcon#ds目前時間- TTL索引欄位時間> expireAfterSrcondsf
t######e### ###r######S######r######c######o######n#####d###### s##################

MongoDB将会自动将这些文档删除,这种索引还有以下这些要求:

  • TTL索引只能有一个字段,没有联合TTL索引
  • TTL不能用于固定集合
  • TTL索引是逐个遍历后,发现满足删除条件会使用delete函数删除,效率并不高

首先在我们文档上增减一个时间字段

for(var i = 90000;i < 100000;i++){
    db.users.updateOne(
    {username:"user"+i},
    {
        $set:{
            createdDate:new Date()
        }
    });
}
登入後複製

创建一个TTL索引并且设定过期时间为60s,待过60s后查询,会发现这些数据已经不存在

db.users.createIndex({createdDate:1},{expireAfterSeconds:60})
&#39;createdDate_1&#39;
登入後複製

另外还可以用CollMod命令更改TTL索引的过期时间

db.runCommand({
  collMod:"users",
  index:{
    keyPattern:{createdDate:1},
    expireAfterSeconds:120
  }
})

{ expireAfterSeconds_old: 60, expireAfterSeconds_new: 120, ok: 1 }
登入後複製

条件索引

条件索引也叫部分索引(partial),只对满足条件的数据进行建立索引.

只对50岁以上的user进行建立username_1索引,查看执行计划会发现isPartial这个字段会变成true

db.users.createIndex({username:1},{partialFilterExpression:{
    age:{$gt:50}
  }})
&#39;username_1&#39;

db.users.find({$and:[{username:"user4"},{age:60}]}).explain()
{ 
  queryPlanner: 
  { 
     ......
     winningPlan: 
     { 
        stage: &#39;FETCH&#39;,
        filter: { age: { &#39;$eq&#39;: 60 } },
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { username: 1 },
           indexName: &#39;username_1&#39;,
           ......
           isPartial: true,
           ......
         } 
     },
     rejectedPlans: [] 
  },
  ......
  ok: 1 
}
登入後複製

稀疏索引

一般的索引会根据某个字段为整个集合创建一个索引,即使某个文档不存这个字段,那么这个索引会把这个文档的这个字段当作null建立在索引当中.

稀疏索引不会对文档中不存在的字段建立索引,如果这个字段存在但是为null时,则会创建索引.

下面给users集合中的部分数据创建稀疏索引

for(var i = 5000;i < 10000;i++){
  if(i < 9000){
    db.users.updateOne(
      {username:"user"+i},
      { $set:{email:(120000000+i)+"@qq.email"}}
    )
  }else{
    db.users.updateOne(
      {username:"user"+i},
      { $set:{email:null}}
    )
  }
}
登入後複製

当不建立索引使用{email:null}条件进行查询时,我们会发现查出来的文档包含没有email字段的文档

db.users.find({email:null})
{ 
  _id: ObjectId("61bdc01ba59136670f6536fd"),
  username: &#39;user0&#39;,
  age: 64.41483801726282,
  sex: 0,
  phone: 18468150001,
  location: 
  { 
    type: &#39;Point&#39;,
    coordinates: [ 101.42490900320335, 42.2576650823515 ] 
  } 
}
......
登入後複製

然后对email这个字段创建一个稀疏索引使用{email:null}条件进行查询,则发现查询来的文档全部是email字段存在且为null的文档.

db.users.createIndex({email:1},{sparse:true});
&#39;email_1&#39;

db.users.find({email:null}).hint({email:1})
{ 
  _id: ObjectId("61bdc12ca59136670f655a25"),
  username: &#39;user9000&#39;,
  age: 94.18397576757012,
  sex: 0,
  phone: 18468159001,
  hobby: [ &#39;钓鱼&#39;, &#39;乒乓球&#39; ],
  location: 
  { 
    type: &#39;Point&#39;,
    coordinates: [ 101.25903151863596, 41.38450145025062 ] 
  },
  email: null 
}
......
登入後複製

文本索引

文本索引将建立索引的文档字段先进行分词再进行检索,但是目前还不支持中文分词.

下面增加两个文本字段,创建一个联合文本索引

db.blog.insertMany([
  {title:"hello world",content:"mongodb is the best database"},
  {title:"index",content:"efficient data structure"}
])

//创建索引
db.blog.createIndex({title:"text",content:"text"})
&#39;title_text_content_text&#39;
//使用文本索引查询
db.blog.find({$text:{$search:"hello data"}})
{ 
  _id: ObjectId("61c092268c4037d17827d977"),
  title: &#39;index&#39;,
  content: &#39;efficient data structure&#39; 
},
{ 
  _id: ObjectId("61c092268c4037d17827d976"),
  title: &#39;hello world&#39;,
  content: &#39;mongodb is the best database&#39; 
}
登入後複製

唯一索引

唯一索引就是在建立索引地字段上不能出现重复元素,除了单字段唯一索引还有联合唯一索引以及数组唯一索引(即数组之间不能有元素交集 )

//对title字段创建唯一索引
db.blog.createIndex({title:1},{unique:true})
&#39;title_1&#39;
//插入一个已经存在的title值
db.blog.insertOne({title:"hello world",content:"mongodb is the best database"})
MongoServerError: E11000 duplicate key error collection: mock.blog index: title_1 dup key: { : "hello world" }
//查看一下执行计划,isUnique为true
db.blog.find({"title":"index"}).explain()
{ 
  queryPlanner: 
  { 
     ......
     winningPlan: 
     { 
        stage: &#39;FETCH&#39;,
        inputStage: 
        { 
           stage: &#39;IXSCAN&#39;,
           keyPattern: { title: 1 },
           indexName: &#39;title_1&#39;,
           isMultiKey: false,
           multiKeyPaths: { title: [] },
           isUnique: true,
           ......
         } 
     },
     rejectedPlans: [] 
  },
  .......
  ok: 1 
}
登入後複製

相关视频教程推荐:《MongoDB教程

以上是帶你聊聊MongoDB中豐富的索引類型的詳細內容。更多資訊請關注PHP中文網其他相關文章!

相關標籤:
來源:juejin.cn
本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn
熱門教學
更多>
最新下載
更多>
網站特效
網站源碼
網站素材
前端模板