目錄
swoole中訊號量的用法是什麼
首頁 php框架 Swoole swoole中信號量的用法是什麼

swoole中信號量的用法是什麼

Mar 14, 2022 pm 03:29 PM
swoole

在swoole中,信號量主要用來保護共享資源,使得資源在一個時刻只有一個進程;信號量的值為正的時候,說明所測試的線程可以鎖定而使用,信號量的值若為0,則表示測試的執行緒要進入睡眠佇列中,等待被喚醒。

swoole中信號量的用法是什麼

本教學操作環境:Windows10系統、Swoole4版、DELL G3電腦

swoole中訊號量的用法是什麼

信號量的使用主要是用來保護共享資源,使得資源在一個時刻只有一個行程(執行緒)

#所擁有。信號量的值為正的時候,表示它空閒。所測試的執行緒可以鎖定而使用它。若為0,表示它被佔用,測試的執行緒要進入睡眠佇列中,等待被喚醒。

Linux提供兩種訊號量:

(1) 核心訊號量,由核心控制路徑使用

(2) 使用者狀態處理使用的信號量,這種訊號量又分成POSIX訊號量和SYSTEM

V信號量。

POSIX訊號量又分為有名訊號量和無名訊號量。

有名信號量,其值保存在檔案中, 所以它可以用於執行緒也可以用於進程間的同步。無名

信號量,其值保存在記憶體中。

核心信號量

核心訊號量的組成

核心訊號量類似於自旋鎖,因為當鎖定關閉時,它不允許內核控制路徑繼續進行。然而,

當核心控制路徑試圖取得核心訊號量鎖定保護的忙碌資源時,相應的進程就被掛起。只有在資源被釋放時,進程才會再次變成可運行。

只有可以睡眠的函數才能取得核心訊號量;中斷處理程序和可延遲函數都不能使用內部

核信號量。

內核信號量是struct semaphore類型的對象,它在

#include <pthread.h>
#include <semaphore.h>
#include <sys/types.h>
#include <stdio.h>
#include <unistd.h>
int number; // 被保护的全局变量
sem_t sem_id;
void* thread_one_fun(void *arg)
{
sem_wait(&sem_id);
printf("thread_one have the semaphore\n");
number++;
printf("number = %d\n",number);
sem_post(&sem_id);
}
void* thread_two_fun(void *arg)
{
sem_wait(&sem_id);
printf("thread_two have the semaphore \n");
number--;
printf("number = %d\n",number);
sem_post(&sem_id);
}
int main(int argc,char *argv[])
{
number = 1;
pthread_t id1, id2;
sem_init(&sem_id, 0, 1);
pthread_create(&id1,NULL,thread_one_fun, NULL);
pthread_create(&id2,NULL,thread_two_fun, NULL);
pthread_join(id1,NULL);
pthread_join(id2,NULL);
printf("main,,,\n");
return 0;
}
登入後複製

上面的例程,到底哪個執行緒先申請到信號量資源,這是隨機的。如果想要某個特定的順

序的話,可以用2個訊號量來實現。例如下面的例程是執行緒1先執行完,然後執行緒2才繼

續執行,直到結束。

int number; // 被保护的全局变量
sem_t sem_id1, sem_id2;
void* thread_one_fun(void *arg)
{
sem_wait(&sem_id1);
printf(“thread_one have the semaphore\n”);
number++;
printf(“number = %d\n”,number);
sem_post(&sem_id2);
}
void* thread_two_fun(void *arg)
{
sem_wait(&sem_id2);
printf(“thread_two have the semaphore \n”);
number–;
printf(“number = %d\n”,number);
sem_post(&sem_id1);
}
int main(int argc,char *argv[])
{
number = 1;
pthread_t id1, id2;
sem_init(&sem_id1, 0, 1); // 空闲的
sem_init(&sem_id2, 0, 0); // 忙的
pthread_create(&id1,NULL,thread_one_fun, NULL);
pthread_create(&id2,NULL,thread_two_fun, NULL);
pthread_join(id1,NULL);
pthread_join(id2,NULL);
printf(“main,,,\n”);
return 0;
}
登入後複製

(b)無名信號量在相關進程間的同步

說是相關進程,是因為本程式中共有2個進程,其中一個是另外一個的子進程(由

fork

產生)的。

本來對於fork來說,子進程只繼承了父進程的程式碼副本,mutex理應在父子進程

中是相互獨立的兩個變數,但由於在初始化mutex的時候,由pshared = 1指

定了mutex處於共享記憶體區域,所以此時mutex變成了父子進程共享的一個變

量。此時,mutex就可以用來同步相關進程了。

#include <semaphore.h>
#include <stdio.h>
#include <errno.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/mman.h>
int main(int argc, char **argv)
{
int fd, i,count=0,nloop=10,zero=0,*ptr;
sem_t mutex;
//open a file and map it into memory
fd = open("log.txt",O_RDWR|O_CREAT,S_IRWXU);
write(fd,&zero,sizeof(int));
ptr = mmap( NULL,sizeof(int),PROT_READ |
PROT_WRITE,MAP_SHARED,fd,0 );
close(fd);
/* create, initialize semaphore */
if( sem_init(&mutex,1,1) < 0) //
{
perror("semaphore initilization");
exit(0);
}
if (fork() == 0)
{ /* child process*/
for (i = 0; i < nloop; i++)
{
sem_wait(&mutex);
printf("child: %d\n", (*ptr)++);
sem_post(&mutex);
}
exit(0);
}
/* back to parent process */
for (i = 0; i < nloop; i++)
{
sem_wait(&mutex);
printf("parent: %d\n", (*ptr)++);
sem_post(&mutex);
}
exit(0);
}
登入後複製

2.有名信號量

有名信號量的特徵是把信號量的值保存在檔案中。

這決定了它的用途非常廣:既可以用於線程,也可以用於相關進程間,甚至是不相關

進程。

(a)有名信號量能在進程間共享的原因

由於有名信號量的值是保存在檔案中的,所以對於相關進程來說,子進程是繼承了父

進程的檔案描述符,那麼子程序所繼承的檔案描述符所指向的檔案是和父行程一樣的,當

#然檔案裡面保存的有名信號量值就共享了。

(b)有名信號量相關函數說明

有名信號量在使用的時候,和無名信號量共享sem_wait和sem_post函數。

差異是有名信號量使用sem_open取代sem_init,另外在結束的時候要像關閉檔案

一樣去關閉這個有名訊號量。

(1)開啟一個已存在的有名信號量,或建立並初始化一個有名信號量。一個單一的呼叫就完

成了信號量的創建、初始化和權限的設定。

sem_t *sem_open(const char *name, int oflag, mode_t mode , int value);

name是檔案的路徑名稱;

Oflag 有O__L| EXCL兩個取值;

mode_t控制新的訊號量的存取權限;

Value指定訊號量的初始化值。

注意:

這裡的name不能寫成/tmp/aaa.sem這樣的格式,因為在linux下,sem都是建立

在/dev/shm目錄下。你可以將name寫成“/mysem”或“mysem”,創建出來的檔案都

是“/dev/shm/sem.mysem”,千萬不要寫路徑。也千萬不要寫「/tmp/mysem」之類的。

當oflag = O_CREAT時,若name指定的信號量不存在時,則會建立一個,而且後

面的mode和value參數必須有效。若name指定的信號量已存在,則直接開啟該信號量,

同時忽略mode和value參數。

當oflag = O_CREAT|O_EXCL時,若name指定的信號量已存在,則函數會直接回傳

回error。

(2) 一旦你使用了信號量,銷毀它們就變得很重要。

在做这个之前,要确定所有对这个有名信号量的引用都已经通过sem_close()函数

关闭了,然后只需在退出或是退出处理函数中调用sem_unlink()去删除系统中的信号量,

注意如果有任何的处理器或是线程引用这个信号量,sem_unlink()函数不会起到任何的作

用。

也就是说,必须是最后一个使用该信号量的进程来执行sem_unlick才有效。因为每个

信号灯有一个引用计数器记录当前的打开次数,sem_unlink必须等待这个数为0时才能把

name所指的信号灯从文件系统中删除。也就是要等待最后一个sem_close发生。

(c)有名信号量在无相关进程间的同步

前面已经说过,有名信号量是位于共享内存区的,那么它要保护的资源也必须是位于

共享内存区,只有这样才能被无相关的进程所共享。

在下面这个例子中,服务进程和客户进程都使用shmget和shmat来获取得一块共享内

存资源。然后利用有名信号量来对这块共享内存资源进行互斥保护。

File1: server.c
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>
#include <semaphore.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#define SHMSZ 27
char SEM_NAME[]= "vik";
int main()
{
char ch;
int shmid;
key_t key;
char *shm,*s;
sem_t *mutex;
//name the shared memory segment
key = 1000;
//create & initialize semaphore
mutex = sem_open(SEM_NAME,O_CREAT,0644,1);
if(mutex == SEM_FAILED)
{
perror("unable to create semaphore");
sem_unlink(SEM_NAME);
exit(-1);
}
//create the shared memory segment with this key
shmid = shmget(key,SHMSZ,IPC_CREAT|0666);
if(shmid<0)
{
perror("failure in shmget");
exit(-1);
}
//attach this segment to virtual memory
shm = shmat(shmid,NULL,0);
//start writing into memory
s = shm;
for(ch=&#39;A&#39;;ch<=&#39;Z&#39;;ch++)
{
sem_wait(mutex);
*s++ = ch;
sem_post(mutex);
}
//the below loop could be replaced by binary semaphore
while(*shm != &#39;*&#39;)
{
sleep(1);
}
sem_close(mutex);
sem_unlink(SEM_NAME);
shmctl(shmid, IPC_RMID, 0);
exit(0);
}
<u>File 2: client.c</u>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <stdio.h>
#include <semaphore.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#define SHMSZ 27
char SEM_NAME[]= "vik";
int main()
{
char ch;
int shmid;
key_t key;
char *shm,*s;
sem_t *mutex;
//name the shared memory segment
key = 1000;
//create & initialize existing semaphore
mutex = sem_open(SEM_NAME,0,0644,0);
if(mutex == SEM_FAILED)
{
perror("reader:unable to execute semaphore");
sem_close(mutex);
exit(-1);
}
//create the shared memory segment with this key
shmid = shmget(key,SHMSZ,0666);
if(shmid<0)
{
perror("reader:failure in shmget");
exit(-1);
}
//attach this segment to virtual memory
shm = shmat(shmid,NULL,0);
//start reading
s = shm;
for(s=shm;*s!=NULL;s++)
{
sem_wait(mutex);
putchar(*s);
sem_post(mutex);
}
//once done signal exiting of reader:This can be replaced by
another semaphore
*shm = &#39;*&#39;;
sem_close(mutex);
shmctl(shmid, IPC_RMID, 0);
exit(0);
}
登入後複製

SYSTEM V信号量

这是信号量值的集合,而不是单个信号量。相关的信号量操作函数由

#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <stdio.h>
static int nsems;
static int semflg;
static int semid;
int errno=0;
union semun {
int val;
struct semid_ds *buf;
unsigned short *array;
}arg;
int main()
{
struct sembuf sops[2]; //要用到两个信号量,所以要定义两个操作数组
int rslt;
unsigned short argarray[80];
arg.array = argarray;
semid = semget(IPC_PRIVATE, 2, 0666);
if(semid < 0 )
{
printf("semget failed. errno: %d\n", errno);
exit(0);
}
//获取0th信号量的原始值
rslt = semctl(semid, 0, GETVAL);
printf("val = %d\n",rslt);
//初始化0th信号量,然后再读取,检查初始化有没有成功
arg.val = 1; // 同一时间只允许一个占有者
semctl(semid, 0, SETVAL, arg);
rslt = semctl(semid, 0, GETVAL);
printf("val = %d\n",rslt);
sops[0].sem_num = 0;
sops[0].sem_op = -1;
sops[0].sem_flg = 0;
sops[1].sem_num = 1;
sops[1].sem_op = 1;
sops[1].sem_flg = 0;
rslt=semop(semid, sops, 1); //申请0th信号量,尝试锁定
if (rslt < 0 )
{
printf("semop failed. errno: %d\n", errno);
exit(0);
}
//可以在这里对资源进行锁定
sops[0].sem_op = 1;
semop(semid, sops, 1); //释放0th信号量
rslt = semctl(semid, 0, GETVAL);
printf("val = %d\n",rslt);
rslt=semctl(semid, 0, GETALL, arg);
if (rslt < 0)
{
printf("semctl failed. errno: %d\n", errno);
exit(0);
}
printf("val1:%d val2: %d\n",(unsigned int)argarray[0],(unsigned int)argarray[1]);
if(semctl(semid, 1, IPC_RMID) == -1)
{
Perror(“semctl failure while clearing reason”);
}
return(0);
}
登入後複製

推荐学习: swoole教程

以上是swoole中信號量的用法是什麼的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
4 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

swoole協程如何在laravel使用 swoole協程如何在laravel使用 Apr 09, 2024 pm 06:48 PM

Laravel 中使用 Swoole 協程可以並發處理大量請求,優點包括:同時處理:允許同時處理多個請求。高效能:基於 Linux epoll 事件機制,高效處理請求。低資源消耗:所需伺服器資源更少。易於整合:與 Laravel 框架無縫集成,使用簡單。

如何使用Swoole實現高效能的HTTP反向代理伺服器 如何使用Swoole實現高效能的HTTP反向代理伺服器 Nov 07, 2023 am 08:18 AM

如何使用Swoole實現高效能的HTTP反向代理伺服器Swoole是一款基於PHP語言的高效能、非同步、並發的網路通訊框架。它提供了一系列的網路功能,可以用來實作HTTP伺服器、WebSocket伺服器等。在本文中,我們將介紹如何使用Swoole來實作一個高效能的HTTP反向代理伺服器,並提供具體的程式碼範例。環境配置首先,我們需要在伺服器上安裝Swoole擴展

swoole和workerman哪個好 swoole和workerman哪個好 Apr 09, 2024 pm 07:00 PM

Swoole 和 Workerman 都是高效能 PHP 伺服器框架。 Swoole 以其非同步處理、出色的效能和可擴展性而聞名,適用於需要處理大量並發請求和高吞吐量的專案。 Workerman 提供了非同步和同步模式的靈活性,具有直覺的 API,更適合易用性和處理較低並發量的專案。

swoole_process 怎麼讓使用者切換 swoole_process 怎麼讓使用者切換 Apr 09, 2024 pm 06:21 PM

Swoole Process 中可讓使用者切換,具體操作步驟為:建立進程;設定進程使用者;啟動進程。

swoole和java哪個表現好 swoole和java哪個表現好 Apr 09, 2024 pm 07:03 PM

效能比較:吞吐量:Swoole 以協程機制,吞吐量更高。延遲:Swoole 的協程上下文切換開銷更低,延遲更小。記憶體消耗:Swoole 的協程佔用記憶體較少。易用性:Swoole 提供更易於使用的並發程式設計 API。

swoole框架怎麼重啟服務 swoole框架怎麼重啟服務 Apr 09, 2024 pm 06:15 PM

若要重新啟動 Swoole 服務,請依照下列步驟操作:檢查服務狀態並取得 PID。使用 "kill -15 PID" 停止服務。使用啟動服務的相同命令重新啟動服務。

Swoole實戰:如何使用協程進行並發任務處理 Swoole實戰:如何使用協程進行並發任務處理 Nov 07, 2023 pm 02:55 PM

Swoole實戰:如何使用協程進行並發任務處理引言在日常的開發中,我們常常會遇到需要同時處理多個任務的情況。傳統的處理方式是使用多執行緒或多進程來實現並發處理,但這種方式在效能和資源消耗上存在一定的問題。而PHP作為一門腳本語言,通常無法直接使用多執行緒或多進程的方式來處理任務。然而,借助於Swoole協程庫,我們可以使用協程來實現高效能的並發任務處理。本文將介

Swoole進階:如何最佳化伺服器的CPU利用率 Swoole進階:如何最佳化伺服器的CPU利用率 Nov 07, 2023 pm 12:27 PM

Swoole是一款高效能的PHP網頁開發框架,借助其強大的非同步機制和事件驅動特點,可實現快速建構高並發、高吞吐的伺服器應用。然而,隨著業務的不斷擴展和並發量的增加,伺服器的CPU利用率可能會成為一個瓶頸,影響伺服器的效能和穩定性。因此,在本文中,我們將介紹如何最佳化伺服器的CPU利用率,同時提高Swoole伺服器的效能和穩定性,並提供具體的最佳化程式碼範例。一、

See all articles