目錄
#0. 學習目標
1. 使用兩個堆疊實作一個佇列
給定兩個佇列,僅使用佇列的基本操作實作一個堆疊。
3. 栈中元素连续性判断
4. 一起來分析Python隊列相關應用與習題
5. 反转队列中前 m 个元素的顺序
首頁 後端開發 Python教學 一起來分析Python隊列相關應用與習題

一起來分析Python隊列相關應用與習題

Mar 30, 2022 pm 06:35 PM
python

本篇文章為大家帶來了關於python的相關知識,其中主要介紹了隊列相關的應用於習題,包括了怎麼使用兩個棧來實現一個隊列,怎麼使用兩個佇列實作一個棧,棧中元素連續性判斷等等,希望對大家有幫助。

一起來分析Python隊列相關應用與習題

推薦學習:python教學

#0. 學習目標

我們已經學習了佇列的相關概念以及其實現,同時也了解了隊列在實際問題中的廣泛應用,本節的主要目的是透過隊列的相關習題來進一步加深對隊列的理解,同時能夠利用隊列降低一些複雜問題解決方案的時間複雜度。

1. 使用兩個堆疊實作一個佇列

[問題] 給定兩個堆疊,僅使用堆疊的基本操作實作一個佇列。

[思路] 解決此問題的關鍵在於堆疊的反轉特性,入棧的一系列元素在出棧時會以相反的順序傳回。因此,使用兩個堆疊就可以實現元素以相同的順序返回(反轉的元素序列再次反轉後就會得到原始順序)。具體操作如下圖所示:

一起來分析Python隊列相關應用與習題

[演算法]

 入隊enqueue
   將元素推入堆疊stack_1
 出隊dequeue
   如果棧stack_2 不為空:
  如果堆疊⃀#stack_2 不為空:   ⃀⃀⃀⃀⃀ stack_2
堆疊頂元素出棧
   否則:      將所有元素依序從stack_1 彈出並壓入stack_2
##  #⃀棧頂元素出棧

[程式碼]

class Queue:
    def __init__(self):
        self.stack_1 = Stack()
        self.stack_2 = Stack()
    def enqueue(self, data):
        self.stack_1.push(data)
    def dequeue(self):
        if self.stack_2.isempty():
            while not self.stack_1.isempty():
                self.stack_2.push(self.stack_1.pop())
        return self.stack_2.pop()
登入後複製

[時空複雜度]

入隊時間複雜度為  O(1),如果堆疊stack_2 不為空,那麼出隊的時間複雜度為##O( 1),如果堆疊stack_2 為空,則需要將元素從 stack_1 轉移到stack_2,但由於stack_2 中轉移的元素數量和出隊的元素數量是相等的,因此出隊的攤銷時間複雜度為O(##1#)2. 使用兩個佇列實作一個堆疊

[問題]

給定兩個佇列,僅使用佇列的基本操作實作一個堆疊。

[想法] 由於佇列並未具備反轉順序的特性,入隊順序即為元素的出隊順序。因此想要取得最後一個入隊的元素,需要先將之前所有元素出隊。因此為了使用兩個佇列實作棧,我們需要將其中一個佇列

store_queue

用來儲存元素,另一個佇列temp_queue 則用來儲存為了取得最後一個元素而儲存暫存隊的元素。 push 操作將給定元素入隊到儲存佇列store_queue 中;pop 操作先將儲存佇列store_queue 中除最後一個元素外的所有元素都會轉移到臨時佇列temp_queue 中,然後儲存佇列store_queue 中的最後一個元素出隊並傳回。具體操作如下圖所示:

[演算法]一起來分析Python隊列相關應用與習題

 算法运行过程需要始终保持其中一个队列为空,用作临时队列
 入栈 push:在非空队列中插入元素 data
   若队列 queue_1 为空:
     将 data 插入 队列 queue_2
   否则:
     将 data 插入 队列 queue_1
 出栈 pop:将队列中的前n1 个元素插入另一队列,删除并返回最后一个元素
   若队列 queue_1 不为空:
     将队列 queue_1 的前n1 个元素插入 queue_2,然后 queue_1 的最后一个元素出队并返回
   若队列 queue_2 不为空:
     将队列 queue_2 的前 n1 个元素插入 queue_1,然后 queue_2 的最后一个元素出队并返回

[代码]

class Stack:
    def __init__(self):
        self.queue_1 = Queue()
        self.queue_2 = Queue()
    def isempty(self):
        return self.queue_1.isempty() and self.queue_2.isempty()
    def push(self, data):
        if self.queue_2.isempty():
            self.queue_1.enqueue(data)
        else:
            self.queue_2.enqueue(data)
    def pop(self):
        if self.isempty():
            raise IndexError("Stack is empty")
        elif self.queue_2.isempty():
            while not self.queue_1.isempty():
                p = self.queue_1.dequeue()
                if self.queue_1.isempty():
                    return p
                self.queue_2.enqueue(p)
        else:
            while not self.queue_2.isempty():
                p = self.queue_2.dequeue()
                if self.queue_2.isempty():
                    return p
                self.queue_1.enqueue(p)
登入後複製

[时空复杂度] push 操作的时间复杂度为O(1),由于 pop 操作时,都需要将所有元素从一个队列转移到另一队列,因此时间复杂度O(n)

3. 栈中元素连续性判断

[问题] 给定一栈 stack1,栈中元素均为整数,判断栈中每对连续的数字是否为连续整数(如果栈有奇数个元素,则排除栈顶元素)。例如,输入栈 [1, 2, 5, 6, -5, -4, 11, 10, 55],输入为 True,因为排除栈顶元素 55 后,(1, 2)(5, 6)(-5, -4)(11, 10) 均为连续整数。

[思路] 由于栈中可能存在奇数个元素,因此为了正确判断,首次需要将栈中元素反转,栈顶元素变为栈底,然后依次出栈,进行判断。

[算法]

 栈 stack 中所有元素依次出栈,并插入队列 queue
 队列 queue 中所有元素出队,并入栈 stack
  while 栈 stack 不为空:
   栈顶元素 e1 出栈,并插入队列 queue
   如果栈 stack 不为空:
     栈顶元素 e2 出栈,并插入队列 queue
     如果 |e1-e2|!=1
       返回 False,跳出循环
 队列 queue 中所有元素出队,并入栈 stack

[代码]

def check_stack_pair(stack):
    queue = Queue()
    flag = True
    # 反转栈中元素
    while not stack.isempty():
        queue.enqueue(stack.pop())
    while not queue.isempty():
        stack.push(queue.dequeue())
    while not stack.isempty():
        e1 = stack.pop()
        queue.enqueue(e1)
        if not stack.isempty():
            e2 = stack.pop()
            queue.enqueue(e2)
            if abs(e1-e2) != 1:
                flag = False
                break
    while not queue.isempty():
        stack.push(queue.dequeue())
    return flag
登入後複製

[时空复杂度] 时间复杂度为 O(n),空间复杂度为 O(n)

4. 一起來分析Python隊列相關應用與習題

[问题] 给定一个整数队列 queue,将队列的前半部分与队列的后半部分交错来重新排列元素。例如输入队列为 [1, 2, 3, 4, 5, 6, 7, 8, 9],则输出应为 [1, 6, 2, 7, 3, 8, 4, 9, 5]

[思路] 通过获取队列的前半部分,然后利用栈的反转特性,可以实现重排操作,如下图所示:

一起來分析Python隊列相關應用與習題

[算法]

 如果队列 queue 中的元素数为偶数:
   half=queue.size//2
 否则:
   half=queue.size//2+1
 1. 将队列 queue 的前半部分元素依次出队并入栈 stack
 2. 栈 stack 中元素出栈并入队 queue
 3. 将队列 queue 中在步骤 1中未出队的另一部分元素依次出队并插入队尾
 4. 将队列 queue 的前半部分元素依次出队并入栈 stack
 5. 将栈 stack 和队列 queue 中的元素交替弹出并入队
 6. 如果栈 stack 非空:
   栈 stack 中元素出栈并入队

[代码]

def queue_order(queue):
    stack = Stack()
    size = queue.size    if size % 2 == 0:
        half = queue.size//2
    else:
        half = queue.size//2 + 1
    res = queue.size - half    for i in range(half):
        stack.push(queue.dequeue())
    while not stack.isempty():
        queue.enqueue(stack.pop())
    for i in range(res):
        queue.enqueue(queue.dequeue())
    for i in range(half):
        stack.push(queue.dequeue())
    for i in range(res):
        queue.enqueue(stack.pop())
        queue.enqueue(queue.dequeue())
    if not stack.isempty():
        queue.enqueue(stack.pop())
登入後複製

[时空复杂度] 时间复杂度为O(n),空间复杂度为 O(n)

5. 反转队列中前 m 个元素的顺序

[问题] 给定一个整数 m 和一个整数队列 queue,反转队列中前 k 个元素的顺序,而其他元素保持不变。如 m=5,队列为 [1, 2, 3, 4, 5, 6, 7, 8, 9],算法输出为 [5, 4, 3, 2, 1, 6, 7, 8, 9]

[思路] 结合 [问题4] 我们可以发现,此题就是 [问题4] 的前 3 步,如下图所示:

反转队列中前 m 个元素的顺序

[算法]

 1. 将队列 queue 的前 m 个元素依次出队并入栈 stack
 2. 栈 stack 中元素出栈并入队 queue
 3. 将队列 queue 中在步骤 1中未出队的另一部分元素依次出队并插入队尾

[代码]

def reverse_m_element(queue, m):
    stack = Stack()
    size = queue.size    if queue.isempty() or m>size:
        return
    for i in range(m):
        stack.push(queue.dequeue())
    while not stack.isempty():
        queue.enqueue(stack.pop())
    for i in range(size-m):
        queue.enqueue(queue.dequeue())
登入後複製

[时空复杂度] 时间复杂度为O(n),空间复杂度为 O(n)

推薦學習:python教學

以上是一起來分析Python隊列相關應用與習題的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

vscode 擴展是否是惡意的 vscode 擴展是否是惡意的 Apr 15, 2025 pm 07:57 PM

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。

See all articles