聊聊Node.js中的多進程和多線程
大家都知道Node 是單線程的,卻不知它也提供了多進(線)程模組來加速處理一些特殊任務,本文便帶領大家了解下Node.js 的多進(線)程,希望對大家有幫助!
我們都知道Node.js 採用的是單執行緒、基於事件驅動的非同步I/O 模型,其特性決定了它無法利用CPU 多核心的優勢,也不擅長完成一些非I/O 類型的操作(例如執行腳本、AI 運算、映像處理等),為了解決此類問題,Node.js 提供了常規的多進(線程)方案(關於進程、執行緒的討論,可參考筆者的另一篇文章Node.js 與並發模型),本文便為大家介紹Node.js 的多進(線)程機制。
child_process
我們可使用child_process
模組建立Node.js 的子進程,來完成一些特殊的任務(例如執行腳本),這個模組主要提供了exec
、execFile
、fork
、spwan
等方法,以下我們就簡單介紹下這些方法的使用。
exec
const { exec } = require('child_process'); exec('ls -al', (error, stdout, stderr) => { console.log(stdout); });
該方法根據options.shell
指定的可執行檔處理命令字串,在命令的執行過程中快取其輸出,直到指令執行完成後,再將執行結果以回呼函數參數的形式傳回。
該方法的參數解釋如下:
command
:將要執行的命令(例如ls -al
);options
:參數設定(可不指定),相關屬性如下:cwd
:子程序的目前工作目錄,預設取process.cwd()
的值;env
:環境變數設定(為鍵值對物件),預設取process.env
的值;encoding
:字元編碼,預設值為:utf8
;shell
:處理命令字串的可執行文件,Unix
上預設值為/bin/ sh
,Windows
上預設值取process.env.ComSpec
# 的值(如為空則為cmd.exe
);例如:const { exec } = require('child_process'); exec("print('Hello World!')", { shell: 'python' }, (error, stdout, stderr) => { console.log(stdout); });
登入後複製運行上面的範例將輸出
Hello World!
,這等同於子程序執行了python -c "print('Hello World!')"
指令,因此在使用該屬性時需要注意,所指定的可執行檔必須支援透過-c
選項來執行相關語句。註:剛好
Node.js
也支援-c
選項,但它等同於--check
選項,只用來偵測指定的腳本是否有語法錯誤,並不會執行相關腳本。signal
:使用指定的AbortSignal 終止子進程,該屬性在v14.17.0 以上可用,例如:const { exec } = require('child_process'); const ac = new AbortController(); exec('ls -al', { signal: ac.signal }, (error, stdout, stderr) => {});
登入後複製上例中,我們可透過呼叫
ac.abort()
來提前終止子程序。timeout
:子程序的逾時時間(如果該屬性的值大於0
,那麼當子程序運行時間超過指定值時,將會給子程序發送屬性killSignal
指定的終止訊號),單位毫米,預設值為0
;## maxBuffer
:stdout 或stderr 所允許的最大快取(二進位),如果超出,子進程將會被殺死,並且將會截斷任何輸出,預設值為
1024 * 1024;
killSignal
:子程序終止訊號,預設值為
SIGTERM;
- ##uid
:執行子程序的
uid
; - gid
:執行子程序的
#gidgid
:執行子程序的 - gid
;
WindowswindowsHide
:是否隱藏子程序的控制台窗口,常用於 系統,預設值為
;
stdout###、###stderr# ## 三個參數:###callback
:回呼函數,包含error
、error
:如果命令行执行成功,值为null
,否则值为 Error 的一个实例,其中error.code
为子进程的退出的错误码,error.signal
为子进程终止的信号;stdout
和stderr
:子进程的stdout
和stderr
,按照encoding
属性的值进行编码,如果encoding
的值为buffer
,或者stdout
、stderr
的值是一个无法识别的字符串,将按照buffer
进行编码。
execFile
const { execFile } = require('child_process'); execFile('ls', ['-al'], (error, stdout, stderr) => { console.log(stdout); });
该方法的功能类似于 exec
,唯一的区别是 execFile
在默认情况下直接用指定的可执行文件(即参数 file
的值)处理命令,这使得其效率略高于 exec
(如果查看 shell 的处理逻辑,笔者感觉这效率可忽略不计)。
该方法的参数解释如下:
file
:可执行文件的名字或路径;args
:可执行文件的参数列表;options
:参数设置(可不指定),相关属性如下:shell
:值为false
时表示直接用指定的可执行文件(即参数file
的值)处理命令,值为true
或其它字符串时,作用等同于exec
中的shell
,默认值为false
;windowsVerbatimArguments
:在Windows
中是否对参数进行引号或转义处理,在Unix
中将忽略该属性,默认值为false
;- 属性
cwd
、env
、encoding
、timeout
、maxBuffer
、killSignal
、uid
、gid
、windowsHide
、signal
在上文中已介绍,此处不再重述。
callback
:回调函数,等同于exec
中的callback
,此处不再阐述。
fork
const { fork } = require('child_process'); const echo = fork('./echo.js', { silent: true }); echo.stdout.on('data', (data) => { console.log(`stdout: ${data}`); }); echo.stderr.on('data', (data) => { console.error(`stderr: ${data}`); }); echo.on('close', (code) => { console.log(`child process exited with code ${code}`); });
该方法用于创建新的 Node.js 实例以执行指定的 Node.js 脚本,与父进程之间以 IPC 方式进行通信。
该方法的参数解释如下:
modulePath
:要运行的 Node.js 脚本路径;args
:传递给 Node.js 脚本的参数列表;options
:参数设置(可不指定),相关属性如:detached
:参见下文对spwan
中options.detached
的说明;execPath
:创建子进程的可执行文件;execArgv
:传递给可执行文件的字符串参数列表,默认取process.execArgv
的值;serialization
:进程间消息的序列号类型,可用值为json
和advanced
,默认值为json
;slient
: 如果为true
,子进程的stdin
、stdout
和stderr
将通过管道传递给父进程,否则将继承父进程的stdin
、stdout
和stderr
;默认值为false
;stdio
:参见下文对spwan
中options.stdio
的说明。这里需要注意的是:- 如果指定了该属性,将忽略
slient
的值; - 必须包含一个值为
ipc
的选项(比如[0, 1, 2, 'ipc']
),否则将抛出异常。
- 如果指定了该属性,将忽略
属性
cwd
、env
、uid
、gid
、windowsVerbatimArguments
、signal
、timeout
、killSignal
在上文中已介绍,此处不再重述。
spwan
const { spawn } = require('child_process'); const ls = spawn('ls', ['-al']); ls.stdout.on('data', (data) => { console.log(`stdout: ${data}`); }); ls.stderr.on('data', (data) => { console.error(`stderr: ${data}`); }); ls.on('close', (code) => { console.log(`child process exited with code ${code}`); });
该方法为 child_process
模块的基础方法,exec
、execFile
、fork
最终都会调用 spawn
来创建子进程。
该方法的参数解释如下:
command
:可执行文件的名字或路径;args
:传递给可执行文件的参数列表;options
:参数设置(可不指定),相关属性如下:argv0
:发送给子进程 argv[0] 的值,默认取参数command
的值;detached
:是否允许子进程可以独立于父进程运行(即父进程退出后,子进程可以继续运行),默认值为false
,其值为true
时,各平台的效果如下所述:- 在
Windows
系统中,父进程退出后,子进程可以继续运行,并且子进程拥有自己的控制台窗口(该特性一旦启动后,在运行过程中将无法更改); - 在非
Windows
系统中,子进程将作为新进程会话组的组长,此刻不管子进程是否与父进程分离,子进程都可以在父进程退出后继续运行。
需要注意的是,如果子进程需要执行长时间的任务,并且想要父进程提前退出,需要同时满足以下几点:
- 调用子进程的
unref
方法从而将子进程从父进程的事件循环中剔除; detached
设置为true
;stdio
为ignore
。
比如下面的例子:
// hello.js const fs = require('fs'); let index = 0; function run() { setTimeout(() => { fs.writeFileSync('./hello', `index: ${index}`); if (index < 10) { index += 1; run(); } }, 1000); } run(); // main.js const { spawn } = require('child_process'); const child = spawn('node', ['./hello.js'], { detached: true, stdio: 'ignore' }); child.unref();
登入後複製- 在
stdio
:子进程标准输入输出配置,默认值为pipe
,值为字符串或数组:- 值为字符串时,会将其转换为含有三个项的数组(比如
pipe
被转换为['pipe', 'pipe', 'pipe']
),可用值为pipe
、overlapped
、ignore
、inherit
; - 值为数组时,其中数组的前三项分别代表对
stdin
、stdout
和stderr
的配置,每一项的可用值为pipe
、overlapped
、ignore
、inherit
、ipc
、Stream 对象、正整数(在父进程打开的文件描述符)、null
(如位于数组的前三项,等同于pipe
,否则等同于ignore
)、undefined
(如位于数组的前三项,等同于pipe
,否则等同于ignore
)。
- 值为字符串时,会将其转换为含有三个项的数组(比如
属性
cwd
、env
、uid
、gid
、serialization
、shell
(值为boolean
或string
)、windowsVerbatimArguments
、windowsHide
、signal
、timeout
、killSignal
在上文中已介绍,此处不再重述。
小结
上文对 child_process
模块中主要方法的使用进行了简短介绍,由于 execSync
、execFileSync
、forkSync
、spwanSync
方法是 exec
、execFile
、spwan
的同步版本,其参数并无任何差异,故不再重述。
cluster
通过 cluster
模块我们可以创建 Node.js 进程集群,通过 Node.js 进程进群,我们可以更加充分地利用多核的优势,将程序任务分发到不同的进程中以提高程序的执行效率;下面将通过例子为大家介绍 cluster
模块的使用:
const http = require('http'); const cluster = require('cluster'); const numCPUs = require('os').cpus().length; if (cluster.isPrimary) { for (let i = 0; i < numCPUs; i++) { cluster.fork(); } } else { http.createServer((req, res) => { res.writeHead(200); res.end(`${process.pid}\n`); }).listen(8000); }
上例通过 cluster.isPrimary
属性判断(即判断当前进程是否为主进程)将其分为两个部分:
- 为真时,根据 CPU 内核的数量并通过
cluster.fork
调用来创建相应数量的子进程; - 为假时,创建一个 HTTP server,并且每个 HTTP server 都监听同一个端口(此处为
8000
)。
运行上面的例子,并在浏览器中访问 http://localhost:8000/
,我们会发现每次访问返回的 pid
都不一样,这说明了请求确实被分发到了各个子进程。Node.js 默认采用的负载均衡策略是轮询调度,可通过环境变量 NODE_CLUSTER_SCHED_POLICY
或 cluster.schedulingPolicy
属性来修改其负载均衡策略:
NODE_CLUSTER_SCHED_POLICY = rr // 或 none cluster.schedulingPolicy = cluster.SCHED_RR; // 或 cluster.SCHED_NONE
另外需要注意的是,虽然每个子进程都创建了 HTTP server,并都监听了同一个端口,但并不代表由这些子进程自由竞争用户请求,因为这样无法保证所有子进程的负载达到均衡。所以正确的流程应该是由主进程监听端口,然后将用户请求根据分发策略转发到具体的子进程进行处理。
由于进程之间是相互隔离的,因此进程之间一般通过共享内存、消息传递、管道等机制进行通讯。Node.js 则是通过消息传递
来完成父子进程之间的通信,比如下面的例子:
const http = require('http'); const cluster = require('cluster'); const numCPUs = require('os').cpus().length; if (cluster.isPrimary) { for (let i = 0; i < numCPUs; i++) { const worker = cluster.fork(); worker.on('message', (message) => { console.log(`I am primary(${process.pid}), I got message from worker: "${message}"`); worker.send(`Send message to worker`) }); } } else { process.on('message', (message) => { console.log(`I am worker(${process.pid}), I got message from primary: "${message}"`) }); http.createServer((req, res) => { res.writeHead(200); res.end(`${process.pid}\n`); process.send('Send message to primary'); }).listen(8000); }
运行上面的例子,并访问 http://localhost:8000/
,再查看终端,我们会看到类似下面的输出:
I am primary(44460), I got message from worker: "Send message to primary" I am worker(44461), I got message from primary: "Send message to worker" I am primary(44460), I got message from worker: "Send message to primary" I am worker(44462), I got message from primary: "Send message to worker"
利用该机制,我们可以监听各子进程的状态,以便在某个子进程出现意外后,能够及时对其进行干预,以保证服务的可用性。
cluster
模块的接口非常简单,为了节省篇幅,这里只对 cluster.setupPrimary
方法做一些特别声明,其它方法请查看官方文档:
cluster.setupPrimary
调用后,相关设置将同步到在cluster.settings
属性中,并且每次调用都基于当前cluster.settings
属性的值;cluster.setupPrimary
调用后,对已运行的子进程没有影响,只影响后续的cluster.fork
调用;cluster.setupPrimary
调用后,不影响后续传递给cluster.fork
调用的env
参数;cluster.setupPrimary
只能在主进程中使用。
worker_threads
前文我们对 cluster
模块进行了介绍,通过它我们可以创建 Node.js 进程集群以提高程序的运行效率,但 cluster
基于多进程模型,进程间高成本的切换以及进程间资源的隔离,会随着子进程数量的增加,很容易导致因系统资源紧张而无法响应的问题。为解决此类问题,Node.js 提供了 worker_threads
,下面我们通过具体的例子对该模块的使用进行简单介绍:
// server.js const http = require('http'); const { Worker } = require('worker_threads'); http.createServer((req, res) => { const httpWorker = new Worker('./http_worker.js'); httpWorker.on('message', (result) => { res.writeHead(200); res.end(`${result}\n`); }); httpWorker.postMessage('Tom'); }).listen(8000); // http_worker.js const { parentPort } = require('worker_threads'); parentPort.on('message', (name) => { parentPort.postMessage(`Welcone ${name}!`); });
上例展示了 worker_threads
的简单使用,在使用 worker_threads
的过程中,需要注意以下几点:
通过
worker_threads.Worker
创建 Worker 实例,其中 Worker 脚本既可以为一个独立的JavaScript
文件,也可以为字符串
,比如上例可修改为:const code = "const { parentPort } = require('worker_threads'); parentPort.on('message', (name) => {parentPort.postMessage(`Welcone ${name}!`);})"; const httpWorker = new Worker(code, { eval: true });
登入後複製通过
worker_threads.Worker
创建 Worker 实例时,可以通过指定workerData
的值来设置 Worker 子线程的初始元数据,比如:// server.js const { Worker } = require('worker_threads'); const httpWorker = new Worker('./http_worker.js', { workerData: { name: 'Tom'} }); // http_worker.js const { workerData } = require('worker_threads'); console.log(workerData);
登入後複製通过
worker_threads.Worker
创建 Worker 实例时,可通过设置SHARE_ENV
以实现在 Worker 子线程与主线程之间共享环境变量的需求,比如:const { Worker, SHARE_ENV } = require('worker_threads'); const worker = new Worker('process.env.SET_IN_WORKER = "foo"', { eval: true, env: SHARE_ENV }); worker.on('exit', () => { console.log(process.env.SET_IN_WORKER); });
登入後複製-
不同于
cluster
中进程间的通信机制,worker_threads
采用的 MessageChannel 来进行线程间的通信:- Worker 子线程通过
parentPort.postMessage
方法发送消息给主线程,并通过监听parentPort
的message
事件来处理来自主线程的消息; - 主线程通过 Worker 子线程实例(此处为
httpWorker
,以下均以此代替 Worker 子线程)的postMessage
方法发送消息给httpWorker
,并通过监听httpWorker
的message
事件来处理来自 Worker 子线程的消息。
- Worker 子线程通过
- 子进程之间的内存空间是互相隔离的,而 Worker 子线程共享所属进程的内存空间;
- 子进程之间的切换成本要远远高于 Worker 子线程之间的切换成本。
在 Node.js 中,无论是 cluster
创建的子进程,还是 worker_threads
创建的 Worker 子线程,它们都拥有属于自己的 V8 实例以及事件循环,所不同的是:
尽管看起来 Worker 子线程比子进程更高效,但 Worker 子线程也有不足的地方,即cluster
提供了负载均衡,而 worker_threads
则需要我们自行完成负载均衡的设计与实现。
總結
本文介紹了Node.js 中child_process
、cluster
和worker_threads
三個模組的使用,透過這三個模組,我們可以充分利用CPU 多核心的優勢,並以多進(線)程的模式來有效率地解決一些特殊任務(如AI、圖片處理等)的運作效率。每個模組都有其適用的場景,文中僅對其基本使用進行了說明,如何結合自己的問題進行高效地運用,還需要大家自行摸索。最後,本文若有紕漏之處,也望大家能指正,祝大家快樂編碼每一天。
更多node相關知識,請造訪:nodejs 教學!
以上是聊聊Node.js中的多進程和多線程的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

要連接 MySQL 資料庫,需要遵循以下步驟:安裝 mysql2 驅動程式。使用 mysql2.createConnection() 建立連接對象,其中包含主機位址、連接埠、使用者名稱、密碼和資料庫名稱。使用 connection.query() 執行查詢。最後使用 connection.end() 結束連線。

C++中函數異常處理對於多執行緒環境特別重要,以確保執行緒安全性和資料完整性。透過try-catch語句,可以在出現異常時擷取和處理特定類型的異常,以防止程式崩潰或資料損壞。

PHP多執行緒是指在一個行程中同時執行多個任務,透過建立獨立運行的執行緒實作。 PHP中可以使用Pthreads擴充模擬多執行緒行為,安裝後可使用Thread類別建立和啟動執行緒。例如,處理大量資料時,可將資料分割為多個區塊,並建立對應數量的執行緒同時處理,提高效率。

PiNetwork節點詳解及安裝指南本文將詳細介紹PiNetwork生態系統中的關鍵角色——Pi節點,並提供安裝和配置的完整步驟。 Pi節點在PiNetwork區塊鏈測試網推出後,成為眾多先鋒積極參與測試的重要環節,為即將到來的主網發布做準備。如果您還不了解PiNetwork,請參考Pi幣是什麼?上市價格多少? Pi用途、挖礦及安全性分析。什麼是PiNetwork? PiNetwork項目始於2019年,擁有其專屬加密貨幣Pi幣。該項目旨在創建一個人人可參與

Node.js 和 Java 的主要差異在於設計和特性:事件驅動與執行緒驅動:Node.js 基於事件驅動,Java 基於執行緒驅動。單執行緒與多執行緒:Node.js 使用單執行緒事件循環,Java 使用多執行緒架構。執行時間環境:Node.js 在 V8 JavaScript 引擎上運行,而 Java 在 JVM 上運行。語法:Node.js 使用 JavaScript 語法,而 Java 使用 Java 語法。用途:Node.js 適用於 I/O 密集型任務,而 Java 適用於大型企業應用程式。

使用Java函數的並發和多執行緒技術可以提升應用程式效能,包括以下步驟:理解並發和多執行緒概念。利用Java的並發和多執行緒函式庫,如ExecutorService和Callable。實作多執行緒矩陣乘法等案例,大幅縮短執行時間。享受並發和多執行緒帶來的應用程式響應速度提升和處理效率優化等優勢。

C++中使用互斥量(mutex)處理多執行緒共享資源:透過std::mutex建立互斥量。使用mtx.lock()取得互斥量,對共享資源進行排他存取。使用mtx.unlock()釋放互斥。

在多執行緒環境中,C++記憶體管理面臨以下挑戰:資料競爭、死鎖和記憶體洩漏。因應措施包括:1.使用同步機制,如互斥鎖和原子變數;2.使用無鎖資料結構;3.使用智慧指標;4.(可選)實現垃圾回收。
