目錄
Prim演算法介紹
1.點睛
#在生成樹的過程中,把已經在生成樹中的節點看作一個集合,把剩下的節點看作另外一個集合,從連接兩個集合的邊中選擇一條權值最小的邊即可。
所以只要在集合 V - U 中找到 lowcost[] 只最小的節點。
依照上面步驟,最終可以得到一棵權值總和最小的生成樹。
Prime 演算法實作
1.建構後的圖
2.程式碼
3.測試
首頁 Java java教程 Java中Prime演算法的原理與實作(總結分享)

Java中Prime演算法的原理與實作(總結分享)

Aug 15, 2022 pm 06:32 PM
java

這篇文章為大家帶來了關於java的相關知識,Prime演算法是一種窮舉查找演算法來從一個連通圖中建構一棵最小生成樹。本文主要為大家介紹了Java中Prime演算法的原理與實現,有興趣的可以學習一下。

Java中Prime演算法的原理與實作(總結分享)

推薦學習:《java影片教學

Prim演算法介紹

1.點睛

#在生成樹的過程中,把已經在生成樹中的節點看作一個集合,把剩下的節點看作另外一個集合,從連接兩個集合的邊中選擇一條權值最小的邊即可。

2.演算法介紹

先任選一個節點,例如節點1,把它放在集合 U 中,U={1},那麼剩下的節點為 V-U={2,3,4,5,6,7},集合 V 是圖的所有節點集合。

現在只要看看連接兩個集合(U 和 V-U)的邊中,哪一邊的權值最小,把權值最小的邊關聯的節點加入集合 U 中。從上圖可以看出,連接兩個集合的3 條邊中,1-2 邊的權值最小,選中它,把節點2 加入集合 U 中,U={1,2},V - U={ 3,4,5,6},如下圖所示。

再從連接兩個集合(U 和 V-U)的邊中選擇一條權最小的邊。從上圖看出,在連接兩個集合的4條邊中,節點2到節點7的邊權值最小,選取這條邊,把節點7加入集合U={1,2,7}中,V-U ={3,4,5,6}。

如此下去,直到 U=V 結束,選取的邊和所有的節點所組成的圖就是最小生成樹。這就是 Prim 演算法。

直觀地看圖,很容易找出集合 U 到 集合 U-V 的邊中哪條邊的權值是最小的,但在程序中窮舉這些邊,再找最小值,則時間複雜度太高。可以透過設定陣列來巧妙解決這個問題,closet[j] 表示集合 V-U 中的節點 j 到集合 U 中的最鄰近點,lowcost[j] 表示集合 V-U 中節點 j 到集合U 中最鄰近點的邊值,即邊(j,closest[j]) 的權值。

例如在上圖中,節點 7 到集合 U 中的最鄰近點是2,cloeest[7]=2。節點 7 到最鄰近點2 的邊值為1,即邊(2,7)的權值,記為 lowcost[7]=1,如下圖所示。

所以只要在集合 V - U 中找到 lowcost[] 只最小的節點。

3. 演算法步驟

1.初始化

令集合 U={u0},u0 屬於 V,並初始化陣列 closest[]、lowcost[]和s[ ]。

2.在集合 V-U 中找 lowcost 值最小的節點t,即 lowcost[t]=min{lowcost[j]},j 屬於 V-U,滿足此公式的節點 t 則為集合 V-U 中連接 V-U,滿足此公式的節點 t 則為集合 V-U 中連接 U的最鄰近點。

3.將節點 t 加入集合 U 。

4.若集合 V - U 為空,則演算法結束,否則轉向步驟 5。

5.對集合 V-U 中的所有節點 j 都更新其 lowcost[] 和 closest[]。 if(C[t][j]

依照上面步驟,最終可以得到一棵權值總和最小的生成樹。

4.圖解

圖 G=(V,E)是無向連通帶權圖,如下圖所示。

1 初始化。假設 u0=1,令集合 U={1},集合 V-U={2,3,4,5,6,7},s[1]=true,初始化陣列 closest[]:除了節點1,其餘節點均為1,表示集合 V-U 中的節點到集合 U 的最鄰近點均為1.lowcost[]:節點1到集合 V-U 中節點的邊值。 closest[] 和 lowcost[] 如下圖。

初始化後的圖為:

######

2 找 lowcost 最小的節點,對應的 t=2,選取的邊和節點如下圖。

3 加入集合U。將節點 t 加入集合 U 中,U={1,2},同時更新 V-U={3,4,5,6,7}

#4 更新。對 t 在集合 V-U 中的每一個鄰接點 j,都可以藉助 t 更新。節點 2 的鄰接點是節點 3 和節點7。

C[2][3]=20

# C[2][7]=1

更新後的closest[]和 lowcost[] 如下圖所示。

更新後的集合如下:

#5 找 lowcost 最小的節點,對應的 t= 7,選取的邊和節點如下圖。

6  加入集合U中。將節點 t 加入集合 U 中,U={1,2,7},同時更新 V-U={3,4,5,6}

7 更新。對 t 在集合 V-U 中的每一個鄰接點 j,都可以藉助 t 更新。節點 7 的鄰接點是節點 3、4、5、6。

  • C[7][3]=4
  • C[7][4]=4
  • #C[7 ][5]=4
  • C[7][6]=4< ;lowcost[6]=28,更新最鄰近距離lowcost[3]=25,最鄰近點closest[6]=7;

更新後的closest[] 和 lowcost[] 如下圖所示。

更新後的集合如下:

#8 找 lowcost 最小的節點,對應的 t= 3,選取的邊和節點如下圖。

9 加入集合U。將節點 t 加入集合 U 中,U={1,2,3,7},同時更新 V-U={4,5,6}

10 更新。對 t 在集合 V-U 中的每一個鄰接點 j,都可以藉助 t 更新。節點 3 的鄰接點是節點 4。

C[3][4]=15>lowcost[4]=9,不更新

closest[] 和 lowcost[] 數組不改變。

更新後的集合如下:

11 找 lowcost 最小的節點,對應的 t=4,選取的邊和節點如下圖。

12 加入集合U。將節點 t 加入集合 U 中,U={1,2,3,4,7},同時更新 V-U={5,6}

13 更新。對 t 在集合 V-U 中的每一個鄰接點 j,都可以藉助 t 更新。節點 4 的鄰接點是節點 5。

C[4][5]=3

#更新後的closest[] 和 lowcost[] 如下圖所示。

更新後的集合如下:

#14 找 lowcost 最小的節點,對應的 t= 5,選取的邊和節點如下圖。

15 加入集合U。將節點 t 加入集合 U 中,U={1,2,3,4,5,7},同時更新 V-U={6}

16 更新。對 t 在集合 V-U 中的每一個鄰接點 j,都可以藉助 t 更新。節點 5 的鄰接點是節點 6。

C[5][6]=17

#更新後的集合如下圖:

17 找 lowcost 最小的節點,對應的 t=6,選取的邊和節點如下圖。

18 加入集合U。將節點 t 加入集合 U 中,U={1,2,3,4,5,6,7},同時更新 V-U={}

19 更新。對 t 在集合 V-U 中的每一個鄰接點 j,都可以藉助 t 更新。節 6 在集合 V-U 中無鄰接點。不用更新 closest[] 和 lowcost[] 。

20 所得的最小生成樹如下。最小生成樹的權值總和為57.

Prime 演算法實作

1.建構後的圖


2.程式碼

package graph.prim;
 
import java.util.Scanner;
 
public class Prim {
    static final int INF = 0x3f3f3f3f;
    static final int N = 100;
    // 如果s[i]=true,说明顶点i已加入U
    static boolean s[] = new boolean[N];
    static int c[][] = new int[N][N];
    static int closest[] = new int[N];
    static int lowcost[] = new int[N];
 
    static void Prim(int n) {
        // 初始时,集合中 U 只有一个元素,即顶点 1
        s[1] = true;
        for (int i = 1; i <= n; i++) {
            if (i != 1) {
                lowcost[i] = c[1][i];
                closest[i] = 1;
                s[i] = false;
            } else
                lowcost[i] = 0;
        }
        for (int i = 1; i < n; i++) {
            int temp = INF;
            int t = 1;
            // 在集合中 V-u 中寻找距离集合U最近的顶点t
            for (int j = 1; j <= n; j++) {
                if (!s[j] && lowcost[j] < temp) {
                    t = j;
                    temp = lowcost[j];
                }
            }
            if (t == 1)
                break; // 找不到 t,跳出循环
            s[t] = true; // 否则,t 加入集合U
            for (int j = 1; j <= n; j++) { // 更新 lowcost 和 closest
                if (!s[j] && c[t][j] < lowcost[j]) {
                    lowcost[j] = c[t][j];
                    closest[j] = t;
                }
            }
        }
    }
 
    public static void main(String[] args) {
        int n, m, u, v, w;
        Scanner scanner = new Scanner(System.in);
        n = scanner.nextInt();
        m = scanner.nextInt();
        int sumcost = 0;
        for (int i = 1; i <= n; i++)
            for (int j = 1; j <= n; j++)
                c[i][j] = INF;
        for (int i = 1; i <= m; i++) {
            u = scanner.nextInt();
            v = scanner.nextInt();
            w = scanner.nextInt();
            c[u][v] = c[v][u] = w;
        }
        Prim(n);
        System.out.println("数组lowcost:");
 
        for (int i = 1; i <= n; i++)
            System.out.print(lowcost[i] + " ");
 
        System.out.println();
        for (int i = 1; i <= n; i++)
            sumcost += lowcost[i];
        System.out.println("最小的花费:" + sumcost);
    }
}
登入後複製

3.測試

推薦學習:《 java影片教學

以上是Java中Prime演算法的原理與實作(總結分享)的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1662
14
CakePHP 教程
1419
52
Laravel 教程
1311
25
PHP教程
1261
29
C# 教程
1234
24
突破或從Java 8流返回? 突破或從Java 8流返回? Feb 07, 2025 pm 12:09 PM

Java 8引入了Stream API,提供了一種強大且表達力豐富的處理數據集合的方式。然而,使用Stream時,一個常見問題是:如何從forEach操作中中斷或返回? 傳統循環允許提前中斷或返回,但Stream的forEach方法並不直接支持這種方式。本文將解釋原因,並探討在Stream處理系統中實現提前終止的替代方法。 延伸閱讀: Java Stream API改進 理解Stream forEach forEach方法是一個終端操作,它對Stream中的每個元素執行一個操作。它的設計意圖是處

PHP:網絡開發的關鍵語言 PHP:網絡開發的關鍵語言 Apr 13, 2025 am 12:08 AM

PHP是一種廣泛應用於服務器端的腳本語言,特別適合web開發。 1.PHP可以嵌入HTML,處理HTTP請求和響應,支持多種數據庫。 2.PHP用於生成動態網頁內容,處理表單數據,訪問數據庫等,具有強大的社區支持和開源資源。 3.PHP是解釋型語言,執行過程包括詞法分析、語法分析、編譯和執行。 4.PHP可以與MySQL結合用於用戶註冊系統等高級應用。 5.調試PHP時,可使用error_reporting()和var_dump()等函數。 6.優化PHP代碼可通過緩存機制、優化數據庫查詢和使用內置函數。 7

PHP與Python:了解差異 PHP與Python:了解差異 Apr 11, 2025 am 12:15 AM

PHP和Python各有優勢,選擇應基於項目需求。 1.PHP適合web開發,語法簡單,執行效率高。 2.Python適用於數據科學和機器學習,語法簡潔,庫豐富。

PHP與其他語言:比較 PHP與其他語言:比較 Apr 13, 2025 am 12:19 AM

PHP適合web開發,特別是在快速開發和處理動態內容方面表現出色,但不擅長數據科學和企業級應用。與Python相比,PHP在web開發中更具優勢,但在數據科學領域不如Python;與Java相比,PHP在企業級應用中表現較差,但在web開發中更靈活;與JavaScript相比,PHP在後端開發中更簡潔,但在前端開發中不如JavaScript。

PHP與Python:核心功能 PHP與Python:核心功能 Apr 13, 2025 am 12:16 AM

PHP和Python各有優勢,適合不同場景。 1.PHP適用於web開發,提供內置web服務器和豐富函數庫。 2.Python適合數據科學和機器學習,語法簡潔且有強大標準庫。選擇時應根據項目需求決定。

Java程序查找膠囊的體積 Java程序查找膠囊的體積 Feb 07, 2025 am 11:37 AM

膠囊是一種三維幾何圖形,由一個圓柱體和兩端各一個半球體組成。膠囊的體積可以通過將圓柱體的體積和兩端半球體的體積相加來計算。本教程將討論如何使用不同的方法在Java中計算給定膠囊的體積。 膠囊體積公式 膠囊體積的公式如下: 膠囊體積 = 圓柱體體積 兩個半球體體積 其中, r: 半球體的半徑。 h: 圓柱體的高度(不包括半球體)。 例子 1 輸入 半徑 = 5 單位 高度 = 10 單位 輸出 體積 = 1570.8 立方單位 解釋 使用公式計算體積: 體積 = π × r2 × h (4

PHP的影響:網絡開發及以後 PHP的影響:網絡開發及以後 Apr 18, 2025 am 12:10 AM

PHPhassignificantlyimpactedwebdevelopmentandextendsbeyondit.1)ItpowersmajorplatformslikeWordPressandexcelsindatabaseinteractions.2)PHP'sadaptabilityallowsittoscaleforlargeapplicationsusingframeworkslikeLaravel.3)Beyondweb,PHPisusedincommand-linescrip

PHP:許多網站的基礎 PHP:許多網站的基礎 Apr 13, 2025 am 12:07 AM

PHP成為許多網站首選技術棧的原因包括其易用性、強大社區支持和廣泛應用。 1)易於學習和使用,適合初學者。 2)擁有龐大的開發者社區,資源豐富。 3)廣泛應用於WordPress、Drupal等平台。 4)與Web服務器緊密集成,簡化開發部署。

See all articles