目錄
初識apscheduler
apscheduler有哪些模組
首頁 後端開發 Python教學 詳細解析Python實作定時任務之apscheduler

詳細解析Python實作定時任務之apscheduler

Oct 10, 2022 pm 04:29 PM
python

本篇文章為大家帶來了關於Python的相關知識,其中主要介紹了關於實現定時任務的相關問題,可以使用第三方包來管理定時任務,相對來說apscheduler使用起來更簡單,下面一起來看看使用的方法,希望對大家有幫助。

詳細解析Python實作定時任務之apscheduler

【相關推薦:Python3影片教學

初識apscheduler

來個簡單的例子看看apscheduler是如何使用的。

#encoding:utf-8
from apscheduler.schedulers.blocking import BlockingScheduler
import datetime
def sch_test():
    now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print('时间:{}, 测试apscheduler'.format(now))
task = BlockingScheduler()
task.add_job(func=sch_test, trigger='cron', second='*/10')
task.start()
登入後複製

上述範例很簡單,我們首先要定義一個apscheduler的對象,然後add_job加入任務,最後start開啟任務就行了。

範例是每隔10秒執行一次sch_test任務,運行結果如下:

时间:2022-10-08 15:16:30, 测试apscheduler
时间:2022-10-08 15:16:40, 测试apscheduler
时间:2022-10-08 15:16:50, 测试apscheduler
时间:2022-10-08 15:17:00, 测试apscheduler
登入後複製

如果我們要在執行任務函數時攜帶參數,只要在add_job函數中加入args就行,例如task .add_job(func=sch_test, args=('a'), trigger='cron', second='*/10')。

apscheduler有哪些模組

上面範例我們初步了解如何使用apschedulerl了,接下來需要知道apscheduler的設計架構。 apscheduler有四個主要模組,分別是:觸發器triggers、任務記憶體job_stores、執行器executors、調度器schedulers。

1. 觸發器triggers:

#觸發器指的是任務指定的觸發方式,例子中我們用的是“cron”方式。我們可以選擇cron、date、interval中的一個。

cron表示的是定時任務,類似linux crontab,在指定的時間觸發。

可用參數如下:

詳細解析Python實作定時任務之apscheduler

除此之外,我們也可用表達式類型去設定cron。例如常用的有:

詳細解析Python實作定時任務之apscheduler

使用方法範例,在每天7點20分執行一次:

task.add_job(func=sch_test, args=( '定時任務',), trigger='cron',

hour='7', minute='20')

date表示具體到某個時間的一次性任務;

使用方法範例:

# 使用run_date指定运行时间
task.add_job(func='sch_test', trigger='date', run_date=datetime.datetime(2022 ,10 , 8, 16, 1, 30))
# 或者用next_run_time
task.add_job(func=sch_test,trigger='date', next_run_time=datetime.datetime.now() + datetime.timedelta(seconds=3))
登入後複製

interval表示的是循環任務,指定一個間隔時間,每過間隔時間執行一次。

interval可設定如下的參數:

詳細解析Python實作定時任務之apscheduler

使用方法範例,每隔3秒執行一次sch_test任務:

task.add_job(func=sch_test, args=('循环任务',), trigger='interval', seconds=3)。
登入後複製

來個例子把3種觸發器都使用一遍:

# encoding:utf-8
from apscheduler.schedulers.blocking import BlockingScheduler
import datetime
def sch_test(job_type):
    now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print('时间:{}, {}测试apscheduler'.format(now, job_type))
task = BlockingScheduler()
task.add_job(func=sch_test, args=('一次性任务',),trigger='date', next_run_time=datetime.datetime.now() + datetime.timedelta(seconds=3))
task.add_job(func=sch_test, args=('定时任务',), trigger='cron', second='*/5')
task.add_job(func=sch_test, args=('循环任务',), trigger='interval', seconds=3)
task.start()
登入後複製

列印部分結果:

时间:2022-10-08 15:45:49, 一次性任务测试apscheduler
时间:2022-10-08 15:45:49, 循环任务测试apscheduler
时间:2022-10-08 15:45:50, 定时任务测试apscheduler
时间:2022-10-08 15:45:52, 循环任务测试apscheduler
时间:2022-10-08 15:45:55, 定时任务测试apscheduler
时间:2022-10-08 15:45:55, 循环任务测试apscheduler
时间:2022-10-08 15:45:58, 循环任务测试apscheduler
登入後複製

透過程式碼範例和結果展示,我們可清晰的知道不同觸發器的使用差異。

2. 任務記憶體job_stores

#顧名思義,任務記憶體是儲存任務的地方,預設都是儲存在記憶體中。我們也可自訂儲存方式,例如將任務儲存到mysql。這裡有以下幾種選擇:

詳細解析Python實作定時任務之apscheduler

通常預設儲存在記憶體即可,但若程式故障重啟的話,會重新拉取任務運行了,如果你對任務的執行要求高,那麼可以選擇其他的記憶體。

使用SQLAlchemyJobStore記憶體範例:

from apscheduler.schedulers.blocking import BlockingScheduler
def sch_test(job_type):
    now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print('时间:{}, {}测试apscheduler'.format(now, job_type))
sched = BlockingScheduler()
# 使用mysql存储任务
sql_url = 'mysql+pymysql://root:root@localhost:3306/db_name?charset=utf8'
sched.add_jobstore('sqlalchemy',url=sql_url)
# 添加任务
sched.add_job(func=sch_test, args=('定时任务',), trigger='cron', second='*/5')
sched.start()
登入後複製

#3. 執行器executors

執行器的功能就是將任務放到執行緒池或進程池中運行。有以下幾種選擇:

詳細解析Python實作定時任務之apscheduler

預設是ThreadPoolExecutor, 常用的也就是第執行緒和進程池執行器。如果應用是CPU密集型操作,可用ProcessPoolExecutor來執行。

4. 調度器schedulers

調度器屬於apscheduler的核心,它扮演著統籌整個apscheduler系統的角色,記憶體、執行器、觸發器在它的調度下正常運作。調度器有以下幾個:

詳細解析Python實作定時任務之apscheduler

不是特定場景下,我們最常用的是BlockingScheduler調度器。

異常監聽

定時任務在執行時,若出現錯誤,需要設定監聽機制,我們通常會結合logging模組來記錄錯誤訊息。

使用範例:

from apscheduler.schedulers.blocking import BlockingScheduler
import datetime
from apscheduler.events import EVENT_JOB_EXECUTED , EVENT_JOB_ERROR
import logging
# logging日志配置打印格式及保存位置
logging.basicConfig(level=logging.INFO,
                    format='%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
                    datefmt='%Y-%m-%d %H:%M:%S',
                    filename='sche.log',
                    filemode='a')
def log_listen(event):
if event.exception :
print ( '任务出错,报错信息:{}'.format(event.exception))
else:
print ( '任务正常运行...' )
def sch_test(job_type):
    now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print('时间:{}, {}测试apscheduler'.format(now, job_type))
    print(1/0)
sched = BlockingScheduler()
# 使用mysql存储任务
sql_url = 'mysql+pymysql://root:root@localhost:3306/db?charset=utf8'
sched.add_jobstore('sqlalchemy',url=sql_url)
# 添加任务
sched.add_job(func=sch_test, args=('定时任务',), trigger='cron', second='*/5')
# 配置任务执行完成及错误时的监听
sched.add_listener(log_listen, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
# 配置日志监听
sched._logger = logging
sched.start()
登入後複製

apscheduler的封裝使用

#

上面介绍了apscheduler框架的主要模块,我们基本能掌握怎样使用apscheduler了。下面就来封装一下apscheduler吧,以后要用直接在这份代码上修改就行了。

from apscheduler.schedulers.blocking import BlockingScheduler
from apscheduler.executors.pool import ThreadPoolExecutor, ProcessPoolExecutor
from apscheduler.events import EVENT_JOB_EXECUTED , EVENT_JOB_ERROR
import logging
import logging.handlers
import os
import datetime
class LoggerUtils():
    def init_logger(self, logger_name):
        # 日志格式
        formatter = logging.Formatter('%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s')
        log_obj = logging.getLogger(logger_name)
        log_obj.setLevel(logging.INFO)
        # 设置log存储位置
        path = '/data/logs/'
        filename = '{}{}.log'.format(path, logger_name)
        if not os.path.exists(path):
            os.makedirs(path)
        # 设置日志按照时间分割
        timeHandler = logging.handlers.TimedRotatingFileHandler(
           filename,
           when='D',  # 按照什么维度切割, S:秒,M:分,H:小时,D:天,W:周
           interval=1, # 多少天切割一次
           backupCount=10  # 保留几天
        )
        timeHandler.setLevel(logging.INFO)
        timeHandler.setFormatter(formatter)
        log_obj.addHandler(timeHandler)
        return log_obj
class Scheduler(LoggerUtils):
    def __init__(self):
        # 执行器设置
        executors = {
            'default': ThreadPoolExecutor(10),  # 设置一个名为“default”的ThreadPoolExecutor,其worker值为10
            'processpool': ProcessPoolExecutor(5)  # 设置一个名为“processpool”的ProcessPoolExecutor,其worker值为5
        }
        self.scheduler = BlockingScheduler(timezone="Asia/Shanghai", executors=executors)
        # 存储器设置
        # 这里使用sqlalchemy存储器,将任务存储在mysql
        sql_url = 'mysql+pymysql://root:root@localhost:3306/db?charset=utf8'
        self.scheduler.add_jobstore('sqlalchemy',url=sql_url)
        def log_listen(event):
            if event.exception:
                # 日志记录
                self.scheduler._logger.error(event.traceback)
    
        # 配置任务执行完成及错误时的监听
        self.scheduler.add_listener(log_listen, EVENT_JOB_EXECUTED | EVENT_JOB_ERROR)
        # 配置日志监听
        self.scheduler._logger = self.init_logger('sche_test')
    def add_job(self, *args, **kwargs):
        """添加任务"""
        self.scheduler.add_job(*args, **kwargs)
    def start(self):
        """开启任务"""
        self.scheduler.start()
# 测试任务
def sch_test(job_type):
    now = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')
    print('时间:{}, {}测试apscheduler'.format(now, job_type))
    print(1/0)
# 添加任务,开启任务
sched = Scheduler()
# 添加任务
sched.add_job(func=sch_test, args=('定时任务',), trigger='cron', second='*/5')
# 开启任务
sched.start()
登入後複製

【相关推荐:Python3视频教程

以上是詳細解析Python實作定時任務之apscheduler的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.聊天命令以及如何使用它們
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:代碼示例和比較 PHP和Python:代碼示例和比較 Apr 15, 2025 am 12:07 AM

PHP和Python各有優劣,選擇取決於項目需求和個人偏好。 1.PHP適合快速開發和維護大型Web應用。 2.Python在數據科學和機器學習領域佔據主導地位。

CentOS上如何進行PyTorch模型訓練 CentOS上如何進行PyTorch模型訓練 Apr 14, 2025 pm 03:03 PM

在CentOS系統上高效訓練PyTorch模型,需要分步驟進行,本文將提供詳細指南。一、環境準備:Python及依賴項安裝:CentOS系統通常預裝Python,但版本可能較舊。建議使用yum或dnf安裝Python3併升級pip:sudoyumupdatepython3(或sudodnfupdatepython3),pip3install--upgradepip。 CUDA與cuDNN(GPU加速):如果使用NVIDIAGPU,需安裝CUDATool

CentOS上PyTorch的GPU支持情況如何 CentOS上PyTorch的GPU支持情況如何 Apr 14, 2025 pm 06:48 PM

在CentOS系統上啟用PyTorchGPU加速,需要安裝CUDA、cuDNN以及PyTorch的GPU版本。以下步驟將引導您完成這一過程:CUDA和cuDNN安裝確定CUDA版本兼容性:使用nvidia-smi命令查看您的NVIDIA顯卡支持的CUDA版本。例如,您的MX450顯卡可能支持CUDA11.1或更高版本。下載並安裝CUDAToolkit:訪問NVIDIACUDAToolkit官網,根據您顯卡支持的最高CUDA版本下載並安裝相應的版本。安裝cuDNN庫:前

docker原理詳解 docker原理詳解 Apr 14, 2025 pm 11:57 PM

Docker利用Linux內核特性,提供高效、隔離的應用運行環境。其工作原理如下:1. 鏡像作為只讀模板,包含運行應用所需的一切;2. 聯合文件系統(UnionFS)層疊多個文件系統,只存儲差異部分,節省空間並加快速度;3. 守護進程管理鏡像和容器,客戶端用於交互;4. Namespaces和cgroups實現容器隔離和資源限制;5. 多種網絡模式支持容器互聯。理解這些核心概念,才能更好地利用Docker。

Python vs. JavaScript:社區,圖書館和資源 Python vs. JavaScript:社區,圖書館和資源 Apr 15, 2025 am 12:16 AM

Python和JavaScript在社區、庫和資源方面的對比各有優劣。 1)Python社區友好,適合初學者,但前端開發資源不如JavaScript豐富。 2)Python在數據科學和機器學習庫方面強大,JavaScript則在前端開發庫和框架上更勝一籌。 3)兩者的學習資源都豐富,但Python適合從官方文檔開始,JavaScript則以MDNWebDocs為佳。選擇應基於項目需求和個人興趣。

CentOS下PyTorch版本怎麼選 CentOS下PyTorch版本怎麼選 Apr 14, 2025 pm 02:51 PM

在CentOS下選擇PyTorch版本時,需要考慮以下幾個關鍵因素:1.CUDA版本兼容性GPU支持:如果你有NVIDIAGPU並且希望利用GPU加速,需要選擇支持相應CUDA版本的PyTorch。可以通過運行nvidia-smi命令查看你的顯卡支持的CUDA版本。 CPU版本:如果沒有GPU或不想使用GPU,可以選擇CPU版本的PyTorch。 2.Python版本PyTorch

minio安裝centos兼容性 minio安裝centos兼容性 Apr 14, 2025 pm 05:45 PM

MinIO對象存儲:CentOS系統下的高性能部署MinIO是一款基於Go語言開發的高性能、分佈式對象存儲系統,與AmazonS3兼容。它支持多種客戶端語言,包括Java、Python、JavaScript和Go。本文將簡要介紹MinIO在CentOS系統上的安裝和兼容性。 CentOS版本兼容性MinIO已在多個CentOS版本上得到驗證,包括但不限於:CentOS7.9:提供完整的安裝指南,涵蓋集群配置、環境準備、配置文件設置、磁盤分區以及MinI

centos如何安裝nginx centos如何安裝nginx Apr 14, 2025 pm 08:06 PM

CentOS 安裝 Nginx 需要遵循以下步驟:安裝依賴包,如開發工具、pcre-devel 和 openssl-devel。下載 Nginx 源碼包,解壓後編譯安裝,並指定安裝路徑為 /usr/local/nginx。創建 Nginx 用戶和用戶組,並設置權限。修改配置文件 nginx.conf,配置監聽端口和域名/IP 地址。啟動 Nginx 服務。需要注意常見的錯誤,如依賴問題、端口衝突和配置文件錯誤。性能優化需要根據具體情況調整,如開啟緩存和調整 worker 進程數量。

See all articles