一次mysql慢查询事故分析_MySQL
年前项目组接微信公众号。上线之后,跟微信相关的用cid列的查询会话的SQL变慢了几十倍!思考这个问题思考了很久,从出现以来一直是我心头的一个结。cid这一列是建了索引的,普通的cid列更新都没问题,为何只有微信的有问题?相同的前缀又是如何影响索引的?
分析过程 1.explain下微信cid的查询,微信的cid会以mid-qqwanggou001为前缀插入数据
explainselect *from analysis_sessionswhere cid = "mid-qqwanggou001-b99359d9054171901c0"
分析结果如下:
从explain分析可以看出,这个查询使用了索引,但是innodb认为有165万行数据需要给mysql服务器筛选(也就是用where条件过滤)。如果这些庞大的数据在内存,遍历一遍花不了多少时间。但是极有可能,这些数据是在磁盘上的。这么多的数据从磁盘读取然后载入内存,大量磁盘IO必然是十分的耗时的。
2.分析普通cid的查询
取数据进行explain,cid = "sid-a2f9047ddf528d837e5f60843c83aae9"。这个数据是不带公共前缀的。
explainselect *
from analysis_sessions
where cid = "sid-a2f9047ddf528d837e5f60843c83aae9"
分析结果如下:
相同的列,相同的索引,这次存储引擎向mysql服务器仅仅返回了一行数据。也就是说innodb仅仅需要读取一个二级索引的叶子节点。相对于上面那个sql的IO,压力显然小很多。
初步分析结论:带有长前缀的cid查询,innodb存储引擎会向mysql上端服务器返回百万级别的数据。这只是现象,我还是想问,相同的表,相同的列,相同的索引结构(B+树索引),相同的查询,仅仅不同的数据,结果为何有差么大的差别?
近一步分析
纠结这个问题很久了,直到前天晚上散步时候,无意的会想到了 explain结果的key_len这一列。这一列我从来不看,觉得没用,但是27与cid这一列50个varchar的定义格格不入。27明显小于50,首先可以肯定,这个索引用的是前缀索引,说白了,截取了字符串的前面一部分作为索引数据。analysis_session表用的gbk编码,也就是说,索引需要2个字节表示一个varchar。解释一下key_len
27 = 2 * 12 + 2 + 1
27位的索引,仅仅索引了前面12个字符。中间的2存储长度,后面的一个字节存储Null信息,因为这一列是允许Null的。
最终结论:问题到这已经很明了了,微信cid的前缀是17个字符的,大于前缀索引的12个字符,也就是说,所有存储微信cid数据(百万级别)B+树叶子节点将只有一个B+树非叶节点的指针指向这里。于是,当你查微信cid相关的数据时,所有微信cid将被返回给mysql服务器进行where过滤了,效率上讲,这是很恐怖的。索引确实还是被用上了,不然会造成全表扫描。但是这个数据设计的有问题,B+树的查找效率是O(LogN)的,但是遇上这个数据,立刻变成O(N),相当于一个局部全表扫描。
那么合理的推测,只要有新增的微信cid,微信cid的查询只会变的更慢!
引申,更佳的代码 practice:
varchar,blob, text等边长数据建索引的时候,数据库会自动建前缀索引,于是B+树不会索引整个字段的部分。很多同学喜欢用前缀作为字符串的标志,这次要注意了,有前车之鉴了。前缀存入mysql之后会降低检索效率,前缀越长,B+树查询的效率越低。
这里给出代码的建议:
1.将前缀作为后缀,startWith改为endWith
2.不要尝试后缀模糊搜索,like "%.com",这种做法更糟糕,完全用不了索引,于是全表扫描。

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

全表掃描在MySQL中可能比使用索引更快,具體情況包括:1)數據量較小時;2)查詢返回大量數據時;3)索引列不具備高選擇性時;4)複雜查詢時。通過分析查詢計劃、優化索引、避免過度索引和定期維護表,可以在實際應用中做出最優選擇。

InnoDB的全文搜索功能非常强大,能够显著提高数据库查询效率和处理大量文本数据的能力。1)InnoDB通过倒排索引实现全文搜索,支持基本和高级搜索查询。2)使用MATCH和AGAINST关键字进行搜索,支持布尔模式和短语搜索。3)优化方法包括使用分词技术、定期重建索引和调整缓存大小,以提升性能和准确性。

是的,可以在 Windows 7 上安裝 MySQL,雖然微軟已停止支持 Windows 7,但 MySQL 仍兼容它。不過,安裝過程中需要注意以下幾點:下載適用於 Windows 的 MySQL 安裝程序。選擇合適的 MySQL 版本(社區版或企業版)。安裝過程中選擇適當的安裝目錄和字符集。設置 root 用戶密碼,並妥善保管。連接數據庫進行測試。注意 Windows 7 上的兼容性問題和安全性問題,建議升級到受支持的操作系統。

聚集索引和非聚集索引的區別在於:1.聚集索引將數據行存儲在索引結構中,適合按主鍵查詢和範圍查詢。 2.非聚集索引存儲索引鍵值和數據行的指針,適用於非主鍵列查詢。

MySQL是一個開源的關係型數據庫管理系統。 1)創建數據庫和表:使用CREATEDATABASE和CREATETABLE命令。 2)基本操作:INSERT、UPDATE、DELETE和SELECT。 3)高級操作:JOIN、子查詢和事務處理。 4)調試技巧:檢查語法、數據類型和權限。 5)優化建議:使用索引、避免SELECT*和使用事務。

MySQL 數據庫中,用戶和數據庫的關係通過權限和表定義。用戶擁有用戶名和密碼,用於訪問數據庫。權限通過 GRANT 命令授予,而表由 CREATE TABLE 命令創建。要建立用戶和數據庫之間的關係,需創建數據庫、創建用戶,然後授予權限。

MySQL 和 MariaDB 可以共存,但需要謹慎配置。關鍵在於為每個數據庫分配不同的端口號和數據目錄,並調整內存分配和緩存大小等參數。連接池、應用程序配置和版本差異也需要考慮,需要仔細測試和規劃以避免陷阱。在資源有限的情況下,同時運行兩個數據庫可能會導致性能問題。

MySQL支持四種索引類型:B-Tree、Hash、Full-text和Spatial。 1.B-Tree索引適用於等值查找、範圍查詢和排序。 2.Hash索引適用於等值查找,但不支持範圍查詢和排序。 3.Full-text索引用於全文搜索,適合處理大量文本數據。 4.Spatial索引用於地理空間數據查詢,適用於GIS應用。
