首頁 資料庫 mysql教程 简单谈谈MySQL的loose index scan_MySQL

简单谈谈MySQL的loose index scan_MySQL

May 27, 2016 pm 01:45 PM
index mysql

众所周知,InnoDB采用IOT(index organization table)即所谓的索引组织表,而叶子节点也就存放了所有的数据,这就意味着,数据总是按照某种顺序存储的。所以问题来了,如果是这样一个语句,执行起来应该是怎么样的呢?语句如下:

select count(distinct a) from table1;
登入後複製

列a上有一个索引,那么按照简单的想法来讲,如何扫描呢?很简单,一条一条的扫描,这样一来,其实做了一次索引全扫描,效率很差。这种扫描方式会扫描到很多很多的重复的索引,这样说的话优化的办法也是很容易想到的:跳过重复的索引就可以了。于是网上能搜到这样的一个优化的办法:

select count(*) from (select distinct a from table1) t;
登入後複製

从已经搜索到的资料看,这样的执行计划中的extra就从using index变成了using index for group-by。

但是,但是,但是,好在我们现在已经没有使用5.1的版本了,大家基本上都是5.5以上了,这些现代版本,已经实现了loose index scan:

很好很好,就不需要再用这种奇技淫巧去优化SQL了。

文档里关于group by这里写的有点意思,说是最大众化的办法就是进行全表扫描并且创建一个临时表,这样执行计划就会难看的要命了,肯定有ALL和using temporary table了。

5.0之后group by在特定条件下可能使用到loose index scan,

CREATE TABLE log_table (
id INT NOT NULL PRIMARY KEY,
log_machine VARCHAR(20) NOT NULL,
log_time DATETIME NOT NULL
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
CREATE INDEX ix_log_machine_time ON log_table (log_machine, log_time);
登入後複製

1

SELECT MAX(log_time) FROM log_table;
SELECT MAX(log_time) FROM log_table WHERE log_machine IN ('Machine 1');
登入後複製

这两条sql都只需一次index seek便可返回,源于索引的有序排序,优化器意识到min/max位于最左/右块,从而避免范围扫描;
extra显示Select tables optimized away ;
2

代码如下:

SELECT MAX(log_time) FROM log_table WHERE log_machine IN (‘Machine 1','Machine 2','Machine 3','Machine 4');

执行计划type 为range(extra显示using where; using index),即执行索引范围扫描,先读取所有满足log_machine约束的记录,然后对其遍历找出max value;
改进

代码如下:

SELECT MAX(log_time) FROM log_table WHERE log_machine IN (‘Machine 1','Machine 2','Machine 3','Machine 4') group by log_machine order by 1 desc limit 1;


这满足group by选择loose index scan的要求,执行计划的extra显示using index for group-by,执行效果等值于

SELECT MAX(log_time) FROM log_table WHERE log_machine IN (‘Machine 1')
Union
SELECT MAX(log_time) FROM log_table WHERE log_machine IN (‘Machine 2')
…..
登入後複製

即对每个log_machine执行loose index scan,rows从原来的82636下降为16(该表总共1,000,000条记录)。

Group by何时使用loose index scan?

适用条件:

1 针对单表操作
2 Group by使用索引的最左前缀列
3 只支持聚集函数min()/max()
4 Where条件出现的列必须为=constant操作 , 没出现在group by中的索引列必须使用constant
5 不支持前缀索引,即部分列索引 ,如index(c1(10))
执行计划的extra应该显示using index for group-by
假定表t1有个索引idx(c1,c2,c3)

SELECT c1, c2 FROM t1 GROUP BY c1, c2;
SELECT DISTINCT c1, c2 FROM t1;
SELECT c1, MIN(c2) FROM t1 GROUP BY c1;
SELECT c1, c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT MAX(c3), MIN(c3), c1, c2 FROM t1 WHERE c2 > const GROUP BY c1, c2;
SELECT c2 FROM t1 WHERE c1 < const GROUP BY c1, c2;
SELECT c1, c2 FROM t1 WHERE c3 = const GROUP BY c1, c2
SELECT c1, c3 FROM t1 GROUP BY c1, c2;--无法使用松散索引
登入後複製

而SELECT c1, c3 FROM t1 where c3= const GROUP BY c1, c2;则可以

紧凑索引扫描tight index scan
Group by在无法使用loose index scan,还可以选择tight,若两者都不可选,则只能借助临时表;
扫描索引时,须读取所有满足条件的索引键,要么是全索引扫描,要么是范围索引扫描;
Group by的索引列不连续;或者不是从最左前缀开始,但是where条件里出现最左列;

SELECT c1, c2, c3 FROM t1 WHERE c2 = &#39;a&#39; GROUP BY c1, c3;
SELECT c1, c2, c3 FROM t1 WHERE c1 = &#39;a&#39; GROUP BY c2, c3;
登入後複製

5.6的改进
事实上,5.6的index condition push down可以弥补loose index scan缺失带来的性能损失。
KEY(age,zip)

mysql> explain SELECT name FROM people WHERE age BETWEEN 18 AND 20 AND zip IN (12345,12346, 12347);
+----+-------------+--------+-------+---------------+------+---------+------+-------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra    |
+----+-------------+--------+-------+---------------+------+---------+------+-------+-------------+
| 1 | SIMPLE   | people | range | age      | age | 4    | NULL | 90556 | Using where |
+----+-------------+--------+-------+---------------+------+---------+------+-------+-------------+
1 row in set (0.01 sec)
登入後複製

根据key_len=4可以推测出sql只用到索引的第一列,即先通过索引查出满足age (18,20)的行记录,然后从server层筛选出满足zip约束的行;
pre-5.6,对于复合索引,只有当引导列使用"="时才有机会在索引扫描时使用到后面的索引列。

mysql> explain SELECT name FROM people WHERE age=18 AND zip IN (12345,12346, 12347);
+----+-------------+--------+-------+---------------+------+---------+------+------+-------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra    |
+----+-------------+--------+-------+---------------+------+---------+------+------+-------------+
| 1 | SIMPLE   | people | range | age      | age | 8    | NULL |  3 | Using where |
+----+-------------+--------+-------+---------------+------+---------+------+------+-------------+
1 row in set (0.00 sec)
登入後複製

对比一下查询效率

mysql> SELECT sql_no_cache name FROM people WHERE age=19 AND zip IN (12345,12346, 12347);
+----------------------------------+
| name               |
+----------------------------------+
| 888ba838661aff00bbbce114a2a22423 |
+----------------------------------+
1 row in set (0.06 sec)
mysql> SELECT SQL_NO_CACHE name FROM people WHERE age BETWEEN 18 AND 22 AND zip IN (12345,12346, 12347);
+----------------------------------+
| name               |
+----------------------------------+
| ed4481336eb9adca222fd404fa15658e |
| 888ba838661aff00bbbce114a2a22423 |
+----------------------------------+
2 rows in set (1 min 56.09 sec)
登入後複製

对于第二条sql,可以使用union改写,

mysql> SELECT name FROM people WHERE age=18 AND zip IN (12345,12346, 12347)
  -> UNION ALL
  -> SELECT name FROM people WHERE age=19 AND zip IN (12345,12346, 12347)
  -> UNION ALL
  -> SELECT name FROM people WHERE age=20 AND zip IN (12345,12346, 12347)
  -> UNION ALL
  -> SELECT name FROM people WHERE age=21 AND zip IN (12345,12346, 12347)
  -> UNION ALL
-> SELECT name FROM people WHERE age=22 AND zip IN (12345,12346, 12347);
登入後複製

而mysql5.6引入了index condition pushdown,从优化器层面解决了此类问题。

 以上就是简单谈谈MySQL的loose index scan_MySQL的内容,更多相关内容请关注PHP中文网(www.php.cn)!


本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

mysql用戶和數據庫的關係 mysql用戶和數據庫的關係 Apr 08, 2025 pm 07:15 PM

MySQL 數據庫中,用戶和數據庫的關係通過權限和表定義。用戶擁有用戶名和密碼,用於訪問數據庫。權限通過 GRANT 命令授予,而表由 CREATE TABLE 命令創建。要建立用戶和數據庫之間的關係,需創建數據庫、創建用戶,然後授予權限。

mysql 是否要付費 mysql 是否要付費 Apr 08, 2025 pm 05:36 PM

MySQL 有免費的社區版和收費的企業版。社區版可免費使用和修改,但支持有限,適合穩定性要求不高、技術能力強的應用。企業版提供全面商業支持,適合需要穩定可靠、高性能數據庫且願意為支持買單的應用。選擇版本時考慮的因素包括應用關鍵性、預算和技術技能。沒有完美的選項,只有最合適的方案,需根據具體情況謹慎選擇。

RDS MySQL 與 Redshift 零 ETL 集成 RDS MySQL 與 Redshift 零 ETL 集成 Apr 08, 2025 pm 07:06 PM

數據集成簡化:AmazonRDSMySQL與Redshift的零ETL集成高效的數據集成是數據驅動型組織的核心。傳統的ETL(提取、轉換、加載)流程複雜且耗時,尤其是在將數據庫(例如AmazonRDSMySQL)與數據倉庫(例如Redshift)集成時。然而,AWS提供的零ETL集成方案徹底改變了這一現狀,為從RDSMySQL到Redshift的數據遷移提供了簡化、近乎實時的解決方案。本文將深入探討RDSMySQL零ETL與Redshift集成,闡述其工作原理以及為數據工程師和開發者帶來的優勢。

MySQL:初學者的數據管理易用性 MySQL:初學者的數據管理易用性 Apr 09, 2025 am 12:07 AM

MySQL適合初學者使用,因為它安裝簡單、功能強大且易於管理數據。 1.安裝和配置簡單,適用於多種操作系統。 2.支持基本操作如創建數據庫和表、插入、查詢、更新和刪除數據。 3.提供高級功能如JOIN操作和子查詢。 4.可以通過索引、查詢優化和分錶分區來提升性能。 5.支持備份、恢復和安全措施,確保數據的安全和一致性。

mysql用戶名和密碼怎麼填 mysql用戶名和密碼怎麼填 Apr 08, 2025 pm 07:09 PM

要填寫 MySQL 用戶名和密碼,請:1. 確定用戶名和密碼;2. 連接到數據庫;3. 使用用戶名和密碼執行查詢和命令。

MySQL 中的查詢優化對於提高數據庫性能至關重要,尤其是在處理大型數據集時 MySQL 中的查詢優化對於提高數據庫性能至關重要,尤其是在處理大型數據集時 Apr 08, 2025 pm 07:12 PM

1.使用正確的索引索引通過減少掃描的數據量來加速數據檢索select*fromemployeeswherelast_name='smith';如果多次查詢表的某一列,則為該列創建索引如果您或您的應用根據條件需要來自多個列的數據,則創建複合索引2.避免選擇*僅選擇那些需要的列,如果您選擇所有不需要的列,這只會消耗更多的服務器內存並導致服務器在高負載或頻率時間下變慢例如,您的表包含諸如created_at和updated_at以及時間戳之類的列,然後避免選擇*,因為它們在正常情況下不需要低效查詢se

如何針對高負載應用程序優化 MySQL 性能? 如何針對高負載應用程序優化 MySQL 性能? Apr 08, 2025 pm 06:03 PM

MySQL數據庫性能優化指南在資源密集型應用中,MySQL數據庫扮演著至關重要的角色,負責管理海量事務。然而,隨著應用規模的擴大,數據庫性能瓶頸往往成為製約因素。本文將探討一系列行之有效的MySQL性能優化策略,確保您的應用在高負載下依然保持高效響應。我們將結合實際案例,深入講解索引、查詢優化、數據庫設計以及緩存等關鍵技術。 1.數據庫架構設計優化合理的數據庫架構是MySQL性能優化的基石。以下是一些核心原則:選擇合適的數據類型選擇最小的、符合需求的數據類型,既能節省存儲空間,又能提升數據處理速度

了解 ACID 屬性:可靠數據庫的支柱 了解 ACID 屬性:可靠數據庫的支柱 Apr 08, 2025 pm 06:33 PM

數據庫ACID屬性詳解ACID屬性是確保數據庫事務可靠性和一致性的一組規則。它們規定了數據庫系統處理事務的方式,即使在系統崩潰、電源中斷或多用戶並發訪問的情況下,也能保證數據的完整性和準確性。 ACID屬性概述原子性(Atomicity):事務被視為一個不可分割的單元。任何部分失敗,整個事務回滾,數據庫不保留任何更改。例如,銀行轉賬,如果從一個賬戶扣款但未向另一個賬戶加款,則整個操作撤銷。 begintransaction;updateaccountssetbalance=balance-100wh

See all articles