目錄
研究介紹
首頁 科技週邊 人工智慧 強化學習再登Nature封面,自動駕駛安全驗證新典範大幅減少測試里程

強化學習再登Nature封面,自動駕駛安全驗證新典範大幅減少測試里程

Mar 31, 2023 pm 10:38 PM
ai 強化學習

引入密集強化學習,用 AI 驗證 AI。

自動駕駛汽車 (AV) 技術的快速發展,使得我們正處於交通革命的風口浪尖,其規模是自一個世紀前汽車問世以來從未見過的。自動駕駛技術具有顯著提高交通安全性、機動性和永續性的潛力,因此引起了工業界、政府機構、專業組織和學術機構的共同關注。

過去 20 年裡,自動駕駛汽車的發展取得了長足的進步,尤其是隨著深度學習的出現。到 2015 年,開始有公司宣布他們將在 2020 之前量產 AV。不過到目前為止,並且沒有 level 4 等級的 AV 可以在市面上買到。

導致這現象的原因有很多,但最重要的是,自動駕駛汽車的安全性能仍大大低於人類駕駛員。對於美國的普通駕駛者來說,在自然駕駛環境 (NDE) 中發生碰撞的機率約為 1.9 × 10^−6 per mile。相較之下,根據加州 2021 年的脫離報告(Disengagement Reports)顯示,最先進的自動駕駛汽車的脫離率約為 2.0 × 10^−5 / 英里。

附註:脫離率是評定自動駕駛可靠性的重要指標,它描述的是系統運行每 1000 英里需要駕駛員接管的次數。系統的脫離率越低,代表可靠性越佳。當脫離率等於 0 時,也從某種程度上說明這個自動駕駛系統已經達到無人駕駛等級。

儘管脫離率會因為偏見而受到批評,但它已被廣泛用於評估自動駕駛汽車安全性能。

提高自動駕駛汽車安全性能存在的關鍵瓶頸是安全驗證效率低。目前流行的是透過軟體模擬、封閉測試軌道和道路測試相結合的方式來測試自動駕駛汽車的無損檢測。這樣一來,AV 開發人員必須支付大量的經濟和時間成本來評估,阻礙了 AV 部署的進展。

在 NDE 環境中,進行 AV 安全性效能驗證非常複雜。例如,駕駛環境在時空上是複雜的,因此定義此類環境所需的變數是高維度的。隨著變數維數呈指數成長,計算複雜度也呈現指數成長。在這種情況下,即使給定大量數據,深度學習模型也很難學習。在

本文中,來自密西根大學安娜堡分校、清華大學等機構的研究者,他們提出密集深度強化學習 (D2RL,dense deep-reinforcement-learning) 方法來解決這一挑戰。

該研究登 Nature 封面。

強化學習再登Nature封面,自動駕駛安全驗證新典範大幅減少測試里程

  • 論文網址:https://www.nature.com/articles/s41586-023-05732-2
  • #計畫網址:https ://github.com/michigan-traffic-lab/Dense-Deep-Reinforcement-Learning

論文一作封碩,目前是清華大學自動化系終身助理教授(Tenure-Track Assistant Professor) ,此外,他也是密西根大學交通研究所(UMTRI) 的助理研究科學家。他於 2014 年和 2019 年在清華大學自動化系獲得學士和博士學位,師從張毅教授。 2017 年至 2019 年,他在密西根大學土木與環境工程專業擔任訪問博士,師從 Henry X. Liu 教授(本文通訊作者)。

研究介紹

D2RL 方法的基本思想是識別和去除非安全關鍵(non-safety-critical)數據,並利用安全關鍵數據訓練神經網路。由於只有一小部分資料是安全關鍵的,因此其餘資料的資訊將被大量密集化。

與 DRL 方法相比,D2RL 方法可以在不損失無偏性(unbiasedness)的情況下顯著減少多個數量級的策略梯度估計變異數。這種顯著的變異減少可以使神經網路學習和完成 DRL 方法難以處理的任務。

對於 AV 測試,該研究利用 D2RL 方法,透過神經網路訓練週邊車輛 (background vehicles,BV) 學習何時執行何種對抗性操作,旨在提高測試效率。 D2RL 在基於 AI 的對抗性測試環境下可以將 AV 所需的測試里程減少多個數量級,同時確保了測試的無偏性。

D2RL 方法可以應用於複雜的駕駛環境,包括多條高速公路、十字路口和環島,這是以前基於場景的方法無法實現的。並且,該研究提出的方法可以創建智慧測試環境,即使用 AI 來驗證 AI。這是一種範式轉變,它為其他安全關鍵系統進行加速測試和訓練打開了大門。

為了證明基於AI 的測試方法是有效的,該研究使用大規模實際駕駛資料集對BV 進行了訓練,並進行了模擬實驗和物理測試軌道的現場實驗,實驗結果如下圖1所示。

強化學習再登Nature封面,自動駕駛安全驗證新典範大幅減少測試里程

密集深度強化學習

為了利用AI 技術,研究將AV 測試問題表述為馬可夫決策過程(MDP),其中BV 的操作是根據目前狀態資訊決定的。該研究旨在訓練一個由神經網路建模的策略(DRL 智能體),它可以控制 BV 與 AV 交互作用的操作,以最大限度地提高評估效率並確保無偏性。然而,如上所述,受維度和計算複雜度的限制,如果直接應用 DRL 方法,很難甚至根本無法學習有效策略。

由於大多數狀態都是非關鍵的,無法為安全關鍵事件提供信息,因此 D2RL 的重點是去除這些非關鍵狀態的數據。對於 AV 測試問題,可以利用許多安全指標來識別具有不同效率和有效性的關鍵狀態。本研究利用的關鍵度量指標是當前狀態特定時間範圍內(例如 1 秒)內 AV 碰撞率的外部近似值。然後研究編輯了馬可夫過程,丟棄非關鍵狀態的數據,並將剩餘數據用於 DRL 訓練的策略梯度估計和 Bootstrap。

如下圖 2 所示,相較於 DRL,D2RL 的優勢是能夠最大化訓練過程中的獎勵。

強化學習再登Nature封面,自動駕駛安全驗證新典範大幅減少測試里程

AV 模擬測試

為了評估D2RL 方法的準確性、效率、可擴展性和通用性,研究進行了仿真測試。對於每個測試集,研究模擬了一段固定距離的交通行駛,然後記錄並分析測試結果,如下圖 3 所示。

強化學習再登Nature封面,自動駕駛安全驗證新典範大幅減少測試里程

為了進一步研究D2RL 的可擴展性和泛化性,該研究對AV-I 模型進行了不同車道數(2 車道和3 車道) 和行駛距離(400 公尺、2 公里、4 公里和25 公里) 的實驗。本文對 25 公里行程進行了研究 ,因為在美國,平均通勤者單程旅行約為 25 公里。結果如表 1 所示:

強化學習再登Nature封面,自動駕駛安全驗證新典範大幅減少測試里程

以上是強化學習再登Nature封面,自動駕駛安全驗證新典範大幅減少測試里程的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

如何配置Debian Apache日誌格式 如何配置Debian Apache日誌格式 Apr 12, 2025 pm 11:30 PM

本文介紹如何在Debian系統上自定義Apache的日誌格式。以下步驟將指導您完成配置過程:第一步:訪問Apache配置文件Debian系統的Apache主配置文件通常位於/etc/apache2/apache2.conf或/etc/apache2/httpd.conf。使用以下命令以root權限打開配置文件:sudonano/etc/apache2/apache2.conf或sudonano/etc/apache2/httpd.conf第二步:定義自定義日誌格式找到或

Tomcat日誌如何幫助排查內存洩漏 Tomcat日誌如何幫助排查內存洩漏 Apr 12, 2025 pm 11:42 PM

Tomcat日誌是診斷內存洩漏問題的關鍵。通過分析Tomcat日誌,您可以深入了解內存使用情況和垃圾回收(GC)行為,從而有效定位和解決內存洩漏。以下是如何利用Tomcat日誌排查內存洩漏:1.GC日誌分析首先,啟用詳細的GC日誌記錄。在Tomcat啟動參數中添加以下JVM選項:-XX: PrintGCDetails-XX: PrintGCDateStamps-Xloggc:gc.log這些參數會生成詳細的GC日誌(gc.log),包含GC類型、回收對像大小和時間等信息。分析gc.log

debian readdir如何實現文件排序 debian readdir如何實現文件排序 Apr 13, 2025 am 09:06 AM

在Debian系統中,readdir函數用於讀取目錄內容,但其返回的順序並非預先定義的。要對目錄中的文件進行排序,需要先讀取所有文件,再利用qsort函數進行排序。以下代碼演示瞭如何在Debian系統中使用readdir和qsort對目錄文件進行排序:#include#include#include#include//自定義比較函數,用於qsortintcompare(constvoid*a,constvoid*b){returnstrcmp(*(

如何優化debian readdir的性能 如何優化debian readdir的性能 Apr 13, 2025 am 08:48 AM

在Debian系統中,readdir系統調用用於讀取目錄內容。如果其性能表現不佳,可嘗試以下優化策略:精簡目錄文件數量:盡可能將大型目錄拆分成多個小型目錄,降低每次readdir調用處理的項目數量。啟用目錄內容緩存:構建緩存機制,定期或在目錄內容變更時更新緩存,減少對readdir的頻繁調用。內存緩存(如Memcached或Redis)或本地緩存(如文件或數據庫)均可考慮。採用高效數據結構:如果自行實現目錄遍歷,選擇更高效的數據結構(例如哈希表而非線性搜索)存儲和訪問目錄信

Debian syslog如何配置防火牆規則 Debian syslog如何配置防火牆規則 Apr 13, 2025 am 06:51 AM

本文介紹如何在Debian系統中使用iptables或ufw配置防火牆規則,並利用Syslog記錄防火牆活動。方法一:使用iptablesiptables是Debian系統中功能強大的命令行防火牆工具。查看現有規則:使用以下命令查看當前的iptables規則:sudoiptables-L-n-v允許特定IP訪問:例如,允許IP地址192.168.1.100訪問80端口:sudoiptables-AINPUT-ptcp--dport80-s192.16

Debian Nginx日誌路徑在哪裡 Debian Nginx日誌路徑在哪裡 Apr 12, 2025 pm 11:33 PM

Debian系統中,Nginx的訪問日誌和錯誤日誌默認存儲位置如下:訪問日誌(accesslog):/var/log/nginx/access.log錯誤日誌(errorlog):/var/log/nginx/error.log以上路徑是標準DebianNginx安裝的默認配置。如果您在安裝過程中修改過日誌文件存放位置,請檢查您的Nginx配置文件(通常位於/etc/nginx/nginx.conf或/etc/nginx/sites-available/目錄下)。在配置文件中

Debian郵件服務器SSL證書安裝方法 Debian郵件服務器SSL證書安裝方法 Apr 13, 2025 am 11:39 AM

在Debian郵件服務器上安裝SSL證書的步驟如下:1.安裝OpenSSL工具包首先,確保你的系統上已經安裝了OpenSSL工具包。如果沒有安裝,可以使用以下命令進行安裝:sudoapt-getupdatesudoapt-getinstallopenssl2.生成私鑰和證書請求接下來,使用OpenSSL生成一個2048位的RSA私鑰和一個證書請求(CSR):openss

Debian郵件服務器防火牆配置技巧 Debian郵件服務器防火牆配置技巧 Apr 13, 2025 am 11:42 AM

配置Debian郵件服務器的防火牆是確保服務器安全性的重要步驟。以下是幾種常用的防火牆配置方法,包括iptables和firewalld的使用。使用iptables配置防火牆安裝iptables(如果尚未安裝):sudoapt-getupdatesudoapt-getinstalliptables查看當前iptables規則:sudoiptables-L配置

See all articles