首頁 後端開發 Golang 研究如何使用Golang實作一個CNN

研究如何使用Golang實作一個CNN

Apr 05, 2023 pm 02:36 PM

Golang實作CNN

深度學習在電腦科學領域中扮演著至關重要的角色。在電腦視覺領域中,卷積神經網路(CNN)是一種非常受歡迎的技術。在本文中,我們將研究如何使用Golang實作一個CNN。

為了了解CNN,我們要先了解卷積運算。卷積操作是CNN的核心操作,可以透過滑動內核的方式將輸入資料與內核相乘,以產生輸出特徵圖。在Golang中,我們可以使用GoCV對影像進行處理。 GoCV是一個由OpenCV C 函式庫編寫的Golang函式庫,專門用於電腦視覺和影像處理。

在GoCV中,我們可以使用Mat類型來表示影像和特徵圖。 Mat類型是多維矩陣,可以儲存一個或多個通道的值。在CNN中,通常使用三層Mat:輸入Mat,卷積核Mat和輸出Mat。我們可以透過將輸入Mat與卷積核Mat相乘,然後將結果累積到輸出Mat中來實現卷積操作。

以下是使用Golang實現的一個簡單的捲積函數:

func convolve(input, kernel *gocv.Mat, stride int) *gocv.Mat {
    out := gocv.NewMatWithSize((input.Rows()-kernel.Rows())/stride+1, (input.Cols()-kernel.Cols())/stride+1, gocv.MatTypeCV32F)
    for row := 0; row < out.Rows(); row++ {
        for col := 0; col < out.Cols(); col++ {
            sum := float32(0)
            for i := 0; i < kernel.Rows(); i++ {
                for j := 0; j < kernel.Cols(); j++ {
                    inputRow := row*stride + i
                    inputCol := col*stride + j
                    value := input.GetFloatAt(inputRow, inputCol, 0)
                    kernelValue := kernel.GetFloatAt(i, j, 0)
                    sum += value * kernelValue
                }
            }
            out.SetFloatAt(row, col, 0, sum)
        }
    }
    return out
}
登入後複製

在這個簡單的捲積函數中,我們將輸入Mat和卷積核Mat作為輸入參數,並指定移動步長。我們遍歷輸出Mat的每個元素,並將輸入Mat和卷積核Mat相乘並累積到輸出Mat中。最終,我們將輸出Mat作為函數的回傳值。

現在讓我們來看看如何使用卷積函數來實作一個CNN。我們將使用Golang實作一個簡單的兩層CNN,用於對手寫數字進行分類。

我們的網路將由兩個卷積層和兩個全連接層組成。在第一個卷積層之後,我們將應用最大池化層來減少資料的尺寸。在第二個卷積層之後,我們將對資料進行平均池化以進一步減少資料的尺寸。最後,我們將使用兩個全連接層來對特徵資料進行分類。

以下是使用Golang實作的簡單CNN的程式碼:

func main() {
    inputSize := image.Point{28, 28}
    batchSize := 32
    trainData, trainLabels, testData, testLabels := loadData()

    batchCount := len(trainData) / batchSize

    conv1 := newConvLayer(inputSize, 5, 20, 1)
    pool1 := newMaxPoolLayer(conv1.outSize, 2)
    conv2 := newConvLayer(pool1.outSize, 5, 50, 1)
    pool2 := newAvgPoolLayer(conv2.outSize, 2)
    fc1 := newFcLayer(pool2.totalSize(), 500)
    fc2 := newFcLayer(500, 10)

    for i := 0; i < 10; i++ {
        for j := 0; j < batchCount; j++ {
            start := j * batchSize
            end := start + batchSize

            inputs := make([]*gocv.Mat, batchSize)
            for k := start; k < end; k++ {
                inputs[k-start] = preprocess(trainData[k])
            }
            labels := trainLabels[start:end]

            conv1Out := convolveBatch(inputs, conv1)
            relu(conv1Out)
            pool1Out := maxPool(conv1Out, pool1)

            conv2Out := convolveBatch(pool1Out, conv2)
            relu(conv2Out)
            pool2Out := avgPool(conv2Out, pool2)

            fc1Out := fc(pool2Out, fc1)
            relu(fc1Out)
            fc2Out := fc(fc1Out, fc2)

            softmax(fc2Out)
            costGradient := costDerivative(fc2Out, labels)
            fcBackward(fc1, costGradient, fc2Out)
            fcBackward(pool2, fc1.gradient, fc1.out)
            reluBackward(conv2.gradient, pool2.gradient, conv2.out)
            convBackward(pool1, conv2.gradient, conv2.kernels, conv2.out, pool1.out)
            maxPoolBackward(conv1.gradient, pool1.gradient, conv1.out)
            convBackward(inputs, conv1.gradient, conv1.kernels, nil, conv1.out)

            updateParameters([]*layer{conv1, conv2, fc1, fc2})
        }

        accuracy := evaluate(testData, testLabels, conv1, pool1, conv2, pool2, fc1, fc2)
        fmt.Printf("Epoch %d, Accuracy: %f\n", i+1, accuracy)
    }
}
登入後複製

在這個簡單的CNN實作中,我們使用了底層的Mat操作來實作。我們先呼叫loadData函數來載入訓練和測試資料。然後我們定義了卷積層、池化層以及全連接層的結構。我們遍歷所有批次的數據,並使用新的預處理函數將其輸入到網路中。最後,我們使用反向傳播演算法來計算梯度,並更新權重和偏移。

總結:

在本文中,我們了解了卷積運算和CNN的基本原理,並使用Golang實作了一個簡單的CNN。我們使用底層的Mat操作來計算卷積和池化操作,並使用反向傳播演算法來更新權重和偏移。透過實現這個簡單的CNN,我們可以更好地理解神經網絡,並開始探索更高階的CNN。

以上是研究如何使用Golang實作一個CNN的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

Debian OpenSSL有哪些漏洞 Debian OpenSSL有哪些漏洞 Apr 02, 2025 am 07:30 AM

OpenSSL,作為廣泛應用於安全通信的開源庫,提供了加密算法、密鑰和證書管理等功能。然而,其歷史版本中存在一些已知安全漏洞,其中一些危害極大。本文將重點介紹Debian系統中OpenSSL的常見漏洞及應對措施。 DebianOpenSSL已知漏洞:OpenSSL曾出現過多個嚴重漏洞,例如:心臟出血漏洞(CVE-2014-0160):該漏洞影響OpenSSL1.0.1至1.0.1f以及1.0.2至1.0.2beta版本。攻擊者可利用此漏洞未經授權讀取服務器上的敏感信息,包括加密密鑰等。

從前端轉型後端開發,學習Java還是Golang更有前景? 從前端轉型後端開發,學習Java還是Golang更有前景? Apr 02, 2025 am 09:12 AM

後端學習路徑:從前端轉型到後端的探索之旅作為一名從前端開發轉型的後端初學者,你已經有了nodejs的基礎,...

Beego ORM中如何指定模型關聯的數據庫? Beego ORM中如何指定模型關聯的數據庫? Apr 02, 2025 pm 03:54 PM

在BeegoORM框架下,如何指定模型關聯的數據庫?許多Beego項目需要同時操作多個數據庫。當使用Beego...

Go語言中用於浮點數運算的庫有哪些? Go語言中用於浮點數運算的庫有哪些? Apr 02, 2025 pm 02:06 PM

Go語言中用於浮點數運算的庫介紹在Go語言(也稱為Golang)中,進行浮點數的加減乘除運算時,如何確保精度是�...

Go的爬蟲Colly中Queue線程的問題是什麼? Go的爬蟲Colly中Queue線程的問題是什麼? Apr 02, 2025 pm 02:09 PM

Go爬蟲Colly中的Queue線程問題探討在使用Go語言的Colly爬蟲庫時,開發者常常會遇到關於線程和請求隊列的問題。 �...

GoLand中自定義結構體標籤不顯示怎麼辦? GoLand中自定義結構體標籤不顯示怎麼辦? Apr 02, 2025 pm 05:09 PM

GoLand中自定義結構體標籤不顯示怎麼辦?在使用GoLand進行Go語言開發時,很多開發者會遇到自定義結構體標籤在�...

在 Go 語言中,為什麼使用 Println 和 string() 函數打印字符串會出現不同的效果? 在 Go 語言中,為什麼使用 Println 和 string() 函數打印字符串會出現不同的效果? Apr 02, 2025 pm 02:03 PM

Go語言中字符串打印的區別:使用Println與string()函數的效果差異在Go...

在Go語言中使用Redis Stream實現消息隊列時,如何解決user_id類型轉換問題? 在Go語言中使用Redis Stream實現消息隊列時,如何解決user_id類型轉換問題? Apr 02, 2025 pm 04:54 PM

Go語言中使用RedisStream實現消息隊列時類型轉換問題在使用Go語言與Redis...

See all articles