目錄
Koala 概述
資料集和訓練
首頁 科技週邊 人工智慧 130億參數,8個A100訓練,UC柏克萊發布對話模式Koala

130億參數,8個A100訓練,UC柏克萊發布對話模式Koala

Apr 07, 2023 pm 03:12 PM
模型 訓練

自從Meta 發布並開源了LLaMA 系列模型,來自斯坦福大學、UC 伯克利等機構的研究者們紛紛在LLaMA 的基礎上進行“二創”,先後推出了Alpaca、Vicuna 等多個“羊駝”大模型。

羊駝已然成為開源社群的新晉頂流。由於「二創」過於豐富,生物學羊駝屬的英文單字快不夠用了,但是用其他動物的名字為大模型命名也是可以的。

最近,UC 柏克萊的柏克萊人工智慧研究院(BAIR)發布了一個可以在消費級 GPU 上運行的對話模型 Koala(直譯為無尾熊)。 Koala 使用從網路收集的對話資料對 LLaMA 模型進行微調。

130億參數,8個A100訓練,UC柏克萊發布對話模式Koala

專案網址:https://bair.berkeley.edu/blog/2023/04/03/koala/

Koala 已經推出線上測試demo:

130億參數,8個A100訓練,UC柏克萊發布對話模式Koala

  • Demo 位址: https://chat.lmsys.org/?model=koala-13b
  • #開源位址:https://github.com/young-geng/EasyLM

Koala 概述

與Vicuna 類似,Koala 也使用從網路收集的對話資料對LLaMA 模型進行微調,其中重點關注與ChatGPT等閉源大模型對話的公開資料。

研究團隊表示,Koala 模型在 EasyLM 中使用 JAX/Flax 實現,並在配備 8 個 A100 GPU 的單一 Nvidia DGX 伺服器上訓練 Koala 模型。完成 2 個 epoch 的訓練需要 6 小時。在公有雲運算平台上,進行此類訓練的成本通常低於 100 美元。

研究團隊將Koala 與ChatGPT 和史丹佛大學的Alpaca 進行了實驗比較,結果顯示:具有130 億參數的Koala-13B 可以有效地回應各種用戶查詢,產生的反應通常優於Alpaca,並且在超過一半的情況下與ChatGPT 性能相當。

Koala 最重要的意義是它表明:在品質較高的資料集上進行訓練,那麼小到可以在本地運行的模型也可以獲得類似大模型的優秀性能。這意味著開源社群應該更加努力地管理高品質資料集,因為這可能比簡單地增加現有系統的規模更能實現安全、真實和強大的模型。從這個角度看,Koala 是 ChatGPT 一種小而精的平替。

不過,Koala 還只是一個研究原型,在內容、安全性和可靠性方面仍然存在重大缺陷,也不應用於研究以外的任何用途。

資料集和訓練

建立對話模型的主要障礙是管理訓練資料。 ChatGPT、Bard、Bing Chat 和 Claude 等大型對話模型都使用具有大量人工註釋的專有資料集。為了建立 Koala 的訓練資料集,研究團隊從網路和公共資料集中收集對話資料並整理,其中包含使用者公開分享的與大型語言模型(例如 ChatGPT)對話的資料。

不同於其他模型盡可能抓取網路資料來最大化資料集,Koala 是專注於收集小型高品質資料集,包括公共資料集中的問答部分、人類回饋(正面和負面)以及與現有語言模型的對話。具體而言,Koala 的訓練資料集包括以下幾個部分:

ChatGPT 蒸餾資料:

  • ##公開可用的與ChatGPT 對話資料(ShareGPT);
  • Human ChatGPT 比較語料庫(HC3),其中同時使用來自HC3 資料集的人類和ChatGPT 回應。

開源資料:

  • Open Instruction Generalist (OIG);
  • 史丹佛Alpaca 模型所使用的資料集;
  • ##Anthropic HH ;
  • OpenAI WebGPT;
  • OpenAI Summarization。
實驗與評估

該研究進行了一項人工評估,將Koala-All 與Koala-Distill、Alpaca 和ChatGPT 幾個模型的生成結果進行比較,結果如下圖所示。其中,使用兩個不同的資料集進行測試,一個是史丹佛的 Alpaca 測試集,其中包括 180 個測試查詢(Alpaca Test Set),另一個是 Koala Test Set。

130億參數,8個A100訓練,UC柏克萊發布對話模式Koala

總的來說,Koala 模型足以展示LLM 的許多功能,同時又足夠小,方便進行微調或在計算資源有限的情況下使用。研究團隊希望Koala 模型成為未來大型語言模型學術研究的有用平台,潛在的研究應用方向可能包括:

  • 安全性和對齊:Koala 允許進一步研究語言模型的安全性並更好地與人類意圖保持一致。
  • 模型偏差:Koala 使我們能夠更好地理解大型語言模型的偏差,深入研究對話資料集的品質問題,最終有助於改進大型語言模型的效能。
  • 理解大型語言模型:由於Koala 模型可以在相對便宜的消費級GPU 上運行,並且執行多種任務,因此Koala 使我們能夠更好地檢查和理解對話語言模型的內部結構,使語言模型更具可解釋性。
  • #

以上是130億參數,8個A100訓練,UC柏克萊發布對話模式Koala的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! 開源!超越ZoeDepth! DepthFM:快速且精確的單目深度估計! Apr 03, 2024 pm 12:04 PM

0.這篇文章乾了啥?提出了DepthFM:一個多功能且快速的最先進的生成式單目深度估計模型。除了傳統的深度估計任務外,DepthFM還展示了在深度修復等下游任務中的最先進能力。 DepthFM效率高,可以在少數推理步驟內合成深度圖。以下一起來閱讀這項工作~1.論文資訊標題:DepthFM:FastMonocularDepthEstimationwithFlowMatching作者:MingGui,JohannesS.Fischer,UlrichPrestel,PingchuanMa,Dmytr

全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 Apr 09, 2024 am 11:52 AM

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 Apr 18, 2024 pm 07:58 PM

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

替代MLP的KAN,被開源專案擴展到卷積了 替代MLP的KAN,被開源專案擴展到卷積了 Jun 01, 2024 pm 10:03 PM

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! 特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! May 06, 2024 pm 04:13 PM

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

快手版Sora「可靈」開放測試:生成超120s視頻,更懂物理,複雜運動也能精準建模 快手版Sora「可靈」開放測試:生成超120s視頻,更懂物理,複雜運動也能精準建模 Jun 11, 2024 am 09:51 AM

什麼?瘋狂動物城被國產AI搬進現實了?與影片一同曝光的,是一款名為「可靈」全新國產影片生成大模型。 Sora利用了相似的技術路線,結合多項自研技術創新,生產的影片不僅運動幅度大且合理,還能模擬物理世界特性,具備強大的概念組合能力與想像。數據上看,可靈支持生成長達2分鐘的30fps的超長視頻,分辨率高達1080p,且支援多種寬高比。另外再劃個重點,可靈不是實驗室放出的Demo或影片結果演示,而是短影片領域頭部玩家快手推出的產品級應用。而且主打一個務實,不開空頭支票、發布即上線,可靈大模型已在快影

FisheyeDetNet:首個以魚眼相機為基礎的目標偵測演算法 FisheyeDetNet:首個以魚眼相機為基礎的目標偵測演算法 Apr 26, 2024 am 11:37 AM

目標偵測在自動駕駛系統當中是一個比較成熟的問題,其中行人偵測是最早得以部署演算法之一。在多數論文當中已經進行了非常全面的研究。然而,利用魚眼相機進行環視的距離感知相對來說研究較少。由於徑向畸變大,標準的邊界框表示在魚眼相機當中很難實施。為了緩解上述描述,我們探索了擴展邊界框、橢圓、通用多邊形設計為極座標/角度表示,並定義一個實例分割mIOU度量來分析這些表示。所提出的具有多邊形形狀的模型fisheyeDetNet優於其他模型,並同時在用於自動駕駛的Valeo魚眼相機資料集上實現了49.5%的mAP

See all articles