LeCun力薦!哈佛博士分享用GPT-4搞科研,細到每個工作流程
GPT-4的橫空出世,讓許多人對自己的科研擔憂重重,甚至調侃稱NLP不存在了。
與其擔憂,不如將它用到科學研究中,簡之「換個卷法」。
來自哈佛大學的生物統計學博士Kareem Carr稱,自己已經用GPT-4等大型語言模型工具進行學術研究了。
他表示,這些工具非常強大,但同樣存在一些非常痛苦的陷阱。
他的關於LLM使用建議的推文甚至獲得了LeCun的推薦。
一起來看看Kareem Carr如何利用AI利器搞科研。
第一原則:自己無法驗證的內容,不要找LLM
一開始,Carr給了第一個最重要的原則:
永遠不要向大型語言模型(LLM)詢問你無法自行驗證的信息,或要求它執行你無法驗證已正確完成的任務。
唯一的例外是它不是一項關鍵的任務,例如,向LLM詢問公寓裝飾的想法。
「使用文獻綜述的最佳實踐,總結過去10年乳癌研究的研究」。這是一個比較差的請求,因為你無法直接驗證它是否正確地總結了文獻。
而應該這麼問「給我過去10年關於乳癌研究的頂級評論文章的清單」。
這樣的提示不僅可以驗證來源,自己也可以驗證可靠性。
撰寫「提示」小技巧
要求LLM為你寫程式碼或尋找相關資訊非常容易,但是輸出內容的品質可能會有很大的差異。你可以採取以下措施來提高品質:
設定上下文:
#•明確告訴LLM應該使用什麼資訊
#使用術語和符號,讓LLM傾向正確的上下文資訊
如果你對如何處理請求有想法,請告訴LLM使用的具體方法。例如「解這個不等式」應該改成「用Cauchy-Schwarz定理來解這個不等式,然後再應用完成平方」。
要知道,這些語言模型在語言方面比你想像的要複雜得多,即使是非常模糊的提示也會有所幫助。
具體再具體:
這不是Google搜索,所以也不必擔心是否有網站在討論你的確切問題。
「二次項的聯立方程式如何求解?」這個提示就不是明確的,你應該這樣問:「求解x=(1/2 )(a b) 和y=(1/3)(a^2 ab b^2) 關於a和b的方程組」。
#定義輸出格式:
#利用LLMs的彈性,將輸出格式化為最適合你的方式,例如:
• 程式碼
##• 數學公式
#• 文章
#• 教學
#• 簡明指南
你甚至可以要求提供產生以下內容的程式碼,包括表格、圖面、圖表。
儘管你得到了LLM輸出的內容,但這只是一個開始。因為你需要對輸出內容進行驗證。這包括:
• 發現不一致之處
• 透過Google檢索工具輸出內容的術語,取得可支撐的信源
#• 在可能的情況下,編寫程式碼自行測試
#需要自行驗證的原因是,LLM經常犯一些與其看似專業水平不一致的奇怪錯誤。例如,LLM可能會提到一個非常先進的數學概念,但卻對簡單的代數問題摸不著頭緒。
多問一次:
大型語言模型生成的內容是隨機的。有時,重新創建一個新窗口,並再次提出你的問題,或許可以為你提供更好的答案。
另外,就是使用多個LLM工具。 Kareem Carr目前根據自己的需求在研究中使用了Bing AI,GPT-4,GPT-3.5和Bard AI。然而,它們各有自己的優缺點。
引用生產力
#根據Carr經驗,最好同時向GPT-4和Bard AI提出相同的數學問題,以獲得不同的觀點。必應AI適用於網路搜尋。而GPT-4比GPT-3.5聰明很多,但目前OpenAI限制了3小時25條訊息,比較難訪問。
先前,有個網友就遇到了同樣的問題,他表示自己讓ChatGPT提供涉及列表數學性質的參考資料,但ChatGPT生成了跟不不存在的引用,也就是大家所說的「幻覺」問題。
然而,Kareem Carr指出虛假的引用並非完全無用。
#########根據他的經驗,捏造的參考文獻中的單字通常與真實術語,還有相關領域的研究人員有關。因此,再透過谷歌搜尋這些術語,通常讓你可以更接近你正在尋找的資訊。 ##################此外,在搜尋來源時必須也是不錯的選擇。 ##########生產力
#對於LLM提高生產力,有許多不切實際的說法,例如「LLM可以讓你的生產力提高10倍,甚至100倍」。
根據Carr的經驗,這種加速只有在沒有對任何工作進行雙重檢查的情況下才有意義,這對作為學者的人來說是不負責任的。
然而,LLM對Kareem Carr的學術工作流程有很大改進,具體包括:
##- 原型想法設計- 識別無用的想法- 加速繁瑣的資料重新格式化任務- 學習新的程式語言、套件和概念- 谷歌搜尋
##借助當下的LLM,Carr稱自己用在下一步該做什麼上的時間更少了。 LLM可以幫助他將模糊,或不完整的想法推進到完整的解決方案。
此外,LLM也減少了Carr花在與自己主要目標無關的副業上的時間。
最後一句忠告:小心不要被捲入副業。這些工具突然提高生產力可能會令人陶醉,並可能分散個人的注意力。
關於ChatGPT的體驗,Carr曾在領英上發表了一篇動態分享了對ChatGPT使用後的感受:
身為資料科學家,我已經用OpenAI的ChatGPT做了幾週的實驗。它並不像人們想像的那麼好。
儘管最初令人失望,但我的感覺是,類似ChatGPT的系統可以為標準資料分析工作流程增加巨大的價值。
在這一點上,這個價值在哪裡並不明顯。 ChatGPT很容易在簡單的事情上弄錯一些細節,而且它根本無法解決需要多個推理步驟的問題。
未來每個新任務的主要問題仍然是評估和改進ChatGPT的解決方案嘗試是否更容易,還是從頭開始。
我確實發現,即使是ChatGPT的一個糟糕的解決方案也傾向於激活我大腦的相關部分,而從頭開始則不會。
就像他們總是說批評一個計劃總是比自己想出一個計劃更容易。
網友對於AI輸出的內容,需要進行驗證這一點,並稱在大多數情況下,人工智慧的正確率約為90%。但剩下10%的錯誤可能是致命的。
Carr調侃道,如果是100%,那我就沒有工作了。
那麼,為什麼ChatGPT會產生虛假的參考文獻? # 值得注意的是,ChatGPT使用的是統計模型,基於機率猜測下一個單字、句子和段落,以符合使用者提供的上下文。 由於語言模型的來源資料規模非常大,因此需要「壓縮」,這導致最終的統計模型失去了精確度。 這意味著即使原始資料中存在真實的陳述,模型的「失真」會產生一種「模糊性」,從而導致模型產生最“似是而非”的語句。 簡而言之,這個模型沒有能力評估,它所產生的輸出是否等同於一個真實的陳述。 另外,該模型是基於,透過公益組織「Common Crawl」和類似來源收集的公共網路數據,進行爬蟲或抓取而創建的,數據截止到21年。 由於公共網路上的資料基本上是未經過濾的,這些資料可能包含了大量的錯誤訊息。 近日,NewsGuard的一項分析發現,GPT-4實際上比GPT-3.5更容易產生錯誤訊息,而且在回覆中的說服力更加詳細、令人信服。 在1月份,NewsGuard首次測試了GPT-3.5,發現它在100個假新聞敘事中產生了80個。緊接著3月,又對GPT-4進行了測試,結果發現,GPT-4對所有100種虛假敘述都做出了虛假和誤導性的回應。 由此可見,在使用LLM工具過程中需要進行來源的驗證與測試。
以上是LeCun力薦!哈佛博士分享用GPT-4搞科研,細到每個工作流程的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

關於Llama3,又有測試結果新鮮出爐-大模型評測社群LMSYS發布了一份大模型排行榜單,Llama3位列第五,英文單項與GPT-4並列第一。圖片不同於其他Benchmark,這份榜單的依據是模型一對一battle,由全網測評者自行命題並評分。最終,Llama3取得了榜單中的第五名,排在前面的是GPT-4的三個不同版本,以及Claude3超大杯Opus。而在英文單項榜單中,Llama3反超了Claude,與GPT-4打成了平手。對於這一結果,Meta的首席科學家LeCun十分高興,轉發了推文並

人形機器人Ameca升級第二代了!最近,在世界行動通訊大會MWC2024上,世界上最先進機器人Ameca又現身了。會場周圍,Ameca引來一大波觀眾。得到GPT-4加持後,Ameca能夠對各種問題做出即時反應。 「來一段舞蹈」。當被問及是否有情感時,Ameca用一系列的面部表情做出回應,看起來非常逼真。就在前幾天,Ameca背後的英國機器人公司EngineeredArts剛剛示範了團隊最新的開發成果。影片中,機器人Ameca具備了視覺能力,能看見並描述房間整個狀況、描述具體物體。最厲害的是,她還能

卷瘋了卷瘋了,大模型又變天了。就在剛剛,全球最強AI模型一夜易主,GPT-4被拉下神壇。 Anthropic發布了最新的Claude3系列模型,一句話評價:真·全面碾壓GPT-4!在多模態和語言能力指標上,Claude3都贏麻了。用Anthropic的話來說,Claude3系列模型在推理、數學、編碼、多語言理解和視覺方面,都樹立了新的行業基準! Anthropic,就是曾因安全理念不合,而從OpenAI「叛逃」出的員工組成的新創公司,他們的產品一再給OpenAI暴擊。這次的Claude3,更是整了個大的

一覺醒來,工作的方式被徹底改變。微軟把AI神器GPT-4全面接入Office,這下ChatPPT、ChatWord、ChatExcel一家整整齊齊。 CEO納德拉在發表會上直接放話:今天,進入人機互動的新時代,重新發明生產力。新功能名叫Microsoft 365 Copilot(副駕駛),與改變了程式設計師的程式碼助手GitHub Copilot成為一個系列,繼續改變更多人。現在AI不光能自動做PPT,而且能根據Word文件的內容一鍵做出精美排版。甚至連上台時對著每一頁PPT該講什麼話,都給一起安排

開發ChatGPT的OpenAI公司在網站上展示了摩根士丹利進行的一個案例研究。其主題是「摩根士丹利財富管理部署GPT-4來組織其龐大的知識庫。」該案例研究引述摩根士丹利分析、數據與創新主管JeffMcMillan的話說,「該模型將為一個面向內部的聊天機器人提供動力,該機器人將對財富管理內容進行全面搜索,並有效地解鎖摩根士丹利財富管理的累積知識」。 McMillan進一步強調:「採用GPT-4,你基本上立刻就擁有了財富管理領域最博學的人的知識……可以把它想像成我們的首席投資策略師、首席全球經濟學家

《ComputerWorld》雜誌曾經寫過一篇文章,說“編程到1960年就會消失”,因為IBM開發了一種新語言FORTRAN,這種新語言可以讓工程師寫出他們所需的數學公式,然後提交給電腦運行,所以程式設計就會終結。圖片又過了幾年,我們聽到了一種新說法:任何業務人員都可以使用業務術語來描述自己的問題,告訴電腦要做什麼,使用這種叫做COBOL的程式語言,公司不再需要程式設計師了。後來,據說IBM開發了一門名為RPG的新程式語言,可以讓員工填寫表格並產生報告,因此大部分企業的程式設計需求都可以透過它來完成圖

不到一分鐘、不超過20步,任意繞過安全限制,成功越獄大型模型!而且不必知道模型內部細節-只需要兩個黑盒子模型互動,就能讓AI全自動攻陷AI,說出危險內容。聽說曾經紅極一時的“奶奶漏洞”已經被修復了:如今,面對“偵探漏洞”、“冒險家漏洞”和“作家漏洞”,人工智能應該採取何種應對策略呢?一波猛攻下來,GPT-4也遭不住,直接說出要給供水系統投毒只要…這樣那樣。關鍵這只是賓州大學研究團隊曬出的一小波漏洞,而用上他們最新開發的演算法,AI可以自動產生各種攻擊提示。研究人員表示,這種方法相比於現有的
