聊天機器人結構的指南
前幾天寫了一篇《如何更優雅地設計聊天機器人》,有一些小夥伴留言問我:stone,有沒有一些關於聊天機器人架構說明的文章嗎?有需求就有動力,今天我們就來聊聊聊天機器人的架構。
在現今越來越多企業客服系統(當然還有其他業務系統)從傳統的語音通話轉向文字、圖形與智慧語音。
透過聊天機器人溝通越來越受歡迎,主要有兩個原因:簡單和即時。
在下面,我們一起聊聊聊天機器人的工作原理,如何自訂機器人以及了解聊天機器人架構結構所需的一切。
但在開始之前,我們先了解一下基礎知識。
什麼是聊天機器人?
聊天機器人是一種模擬人與計算機,人與人之間對話的程式。當被問到問題時,聊天機器人會使用知識資料庫來回應。
人工智慧 (AI) 用於模擬自然語言的對話或聊天。常見的方式是透過訊息傳遞平台、行動應用程式或電話進行的。
聊天機器人可以實現人機之間的交流,它獨立於人類協助工作,並使用自然語言處理 (NLP) 等技術來回答問題。自然語言處理 (NLP)是人工智慧的一個分支,它使電腦能夠以人類幾乎相同的方式理解文字和口語。
聊天機器人如何運作?
聊天機器人使用戶可以透過文字、音訊、圖片等方式輕鬆找到問題和問題請求的答案,而無需人工幹預。
聊天機器人是一種自動化解決方案,可讓業務同時處理多個客戶查詢。根據一些數據統計,大多數客服業務絕對需要24*7 小時 全天候可用。
現在大多數企業的聊天機器人已經整合了更多規則和自然語言技術,並且最新的模型能夠在使用過程中不斷地進行學習。
今天的人工智慧聊天機器人使用先進的人工智慧工具來明確客戶的真實目的。
聊天機器人主要有兩類,如下圖所示。
基於規則的聊天機器人
這類機器人只能理解他們已經設定好的有限數量的選擇。有以下優點:
- 易於建構:使用真假演算法來理解客戶的查詢,並提出相關答案。
- 方便實作:不需要太高的學習成本,有可能只需要簡單的關鍵字或正規表示式就可以實現。
- 容易把控:規則是企業自己設定的,因此對於輸出答案,不會超過設定的範圍外。
當然有優勢,肯定也有缺點:
- 依賴性強:過於依賴規則,超出預先定義的規則,無法理解其意義
- #基於選單操作:在互動過程中,聊天機器人顯示了使用者需要從中選擇的一系列選項,這使得真正了解使用者的真實意圖變得非常困難,因為它可能不會在選項中表示出來。
基於人工智慧的聊天機器人
這些聊天機器人相對比較複雜,在原來的基礎上加入了人工智慧演算法。使用自然語言處理 (NLP) 和語義來回應開放式查詢。人工智慧聊天機器人可以識別語言、上下文和意圖並做出相應的回應。是一種更複雜的聊天機器人。
在這個領域中,我們發現了兩種不同的方法:
機率聊天機器人
這種類型的機器人使用端到端機器學習來創建基於歷史對話日誌的模型,而不是透過意圖偵測或在知識庫中尋找相關回應。儘管它們不是遵循固定的腳本並且可以自然地與之交互,但機率也是有缺點的:
- 當他們從對話中的經驗和數據中學習時,可能會引入很多偏差。輸出對話的控制有限,有可能機器人會出現一些爭議的答案,會收到客戶的投訴。
- 實現機率聊天機器人需要大量的訓練數據,獲得的數據越多,它的準確性就越好,這對於收集數據的研發人員來說是一個痛苦而且漫長的工作。
- 聊天機器人做出的答案是在一個「黑盒子」(模型)中,這意味著聊天機器人如何做出答案。是沒有任何透明度,而且很難修改或調整推理結果。
確定性愛聊天機器人
這種聊天機器人利用自然語言處理來計算每個單字的權重,分析它們背後的上下文和含義,以輸出結果或答案。
這些聊天機器人能夠根據含義將意圖與答案相符。
它們有其優點和缺點:
- 只輸出企業填充的內容,更容易控制回應語氣和企業形象。
- 這不是根據機率學習,可以提示要包含的新熱門話題。
- 遵循確定性決策樹來引導客戶達到預期的結果。決策樹可能非常複雜,由訓練師監督和控制,不會接受備受爭議的、不受歡迎的答案。
- 每當知識庫中沒有相關的內容可以回應使用者時,訓練家可以重新訓練模型或製定規則,從而實現平穩過渡並減少basecase。
在考慮引進聊天機器人的朋友,可以了解一下聊天機器人架構,能將所有內容組合在一起。當然,您還需要掌握自動化測試。
什麼是聊天機器人架構?
一款聊天機器人的架構,取決於它的用途
無論您使用哪種聊天機器人,機器人通訊流程基本上相同的。
程式語言可以使用 Java、Python、PHP 和其他語音來創建回應查詢的機器人。大多數對話都以問候或問題開始,然後引導用戶通過一系列問題。從而獲得答案。
下面詳細介紹聊天機器人基本的架構。
自然語言理解引擎
這是最核心,最重要的的第一步。使用者輸入一則訊息,NLU 讀取該訊息以了解使用者的意圖。然後規則引擎開始計算最佳反應。
您需要花一些時間來思考您的QA收集庫,能有邏輯,有規律的收集QA庫,當然你還需要了解一下QA 測試策略。
知識庫
這是關於產品、服務或業務需求的資訊庫。它可以包括常見問題、故障排除指南、有關服務的資訊或如何辦理業務。
知識和資料庫都為聊天機器人提供了所需的信息,以便對使用者做出權威的回應。
資料儲存
這是儲存分析和對話日誌的地方。隨著聊天機器人使用時間越長,需要開發更具體、更完善的分析方案,讓模型更精準,覆蓋範圍更廣。
在每個階段,都必須將業務系統化,以保障聊天機器人與業務打通。
最基本的聊天機器人需要什麼架構?
小型企業和行銷活動通常從一級聊天機器人開始。這些通常只能在一個平台上建置。這類擅長處理構成 70-80% 常見問題的簡單問題。這類聊天機器人回答簡單的問題,例如「你幾點開門?」
當使用者需要更複雜的資訊(例如問題診斷)時,需要擴大聊天機器人的規模。
例如,如果有人問:「我的快遞出了什麼問題?」
這將需要更高層次的聊天機器人。
隨著聊天機器人的能力開始更智慧化,可以處理的業務變得更加複雜,就需要更多流量曝光
HTTP 和聊天介面
2級聊天機器人是半腳本化的,並具有即時聊天小部件。在這裡,您可以從首頁直接與客戶支援團隊交談。
訊息代理程式
這是發布者(例如聊天介面)將訊息新增到佇列的地方。客戶透過 微信、釘釘、企業微信和 QQ等即時通訊平台存取聊天機器人。
直播代理平台
如果機器人未能正確識別用戶的意圖,人工代理能夠無縫介入。在某些情況下,他們將解決問題並將對話結束交還給機器人。
該機器人還可以從客戶關係管理 (CRM) 中調用客戶的詳細信息,例如更改密碼或查找訂單。
企業級架構
如果將聊天機器人提升到一個新的水平,需要使用技術來實現複雜的對話。您還需要確定如何擴展軟體的功能。
當然,每個企業都是不一樣的。在這裡總結一下建立具有企業級架構的機器人所需的一些常見技術、工作流程和模式。
除了核心功能之外,還有許多考慮因素。必須在選擇的任何聊天機器人中建立軟體測試計劃程式。
一個對話機器人可以分為「大腦」和一組需求或「模組」。
聊天機器人如何工作
聊天機器人使用三種分類方法進行工作:
- #模式匹配
- 演算法
模式匹配器機器人使用模式匹配來分析文字並產生合適的回應。這些模式的標準結構是人工智慧標記語言(AIML),可以參考訊飛《
abnf 文法規範》
例如:喬·拜登是誰?
。喬·拜登是美國總統
。 聊天機器人知道答案,因為他或她的名字是相關模式的一部分。但是對於超出相關模式的更高級訊息,聊天機器人可以使用演算法。 演算法演算法減少了分類器的數量並創建了更易於管理的結構。在以下範例中,為每個詞條分配了一個分數。 輸入:「你好,早安。」詞條:「你好」(不符)名詞:「好」(類別:問候)術語:「早上」(類別:問候)分類:問候(分數=2)在分數的幫助下,可以找到給定句子的單字匹配,從而辨識出匹配度最高的類別。 自然語言處理引擎此引擎使用加權連線計算輸入和輸出。訓練資料中使用的每個步驟都會修改權重以提高準確性。句子被分解成單獨的單字,然後每個單字用作輸入以匹配網路資料庫的內容。然後不斷地測試這些單字。 企業級架構的其他注意事項此外,聊天機器人架構也必須考慮以下要素。 安全性安全性、治理和資料保護是要被高度重視。這對於儲存數百萬客戶資訊的企業來說尤其重要。 ######如果用戶不希望他們的個人詳細資料洩露,需要考慮如何保持匿名。如果想存取個人資訊,需要以安全的方式進行。 ######建立保密措施非常重要,這樣任何人都無法在未經授權的情況下存取敏感系統。 ######任何小錯誤,例如拼字錯誤或超連結損壞,每月都有可能被成千上萬的使用者看到。 ######一個微小的錯誤可能會對您的企業形象產生巨大影響。 ######總結######聊天機器人簡化了人員和服務之間的交互,從而增強了客戶體驗。它們也為企業提供了改善重參與過程的機會,同時降低了客戶服務成本。 ###以上是聊天機器人結構的指南的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

透過將檢索增強生成和語意記憶納入AI編碼助手,提升開發人員的生產力、效率和準確性。譯自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。雖然基本AI程式設計助理自然有幫助,但由於依賴對軟體語言和編寫軟體最常見模式的整體理解,因此常常無法提供最相關和正確的程式碼建議。這些編碼助手產生的代碼適合解決他們負責解決的問題,但通常不符合各個團隊的編碼標準、慣例和風格。這通常會導致需要修改或完善其建議,以便將程式碼接受到應

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

編輯|KX在藥物研發領域,準確有效地預測蛋白質與配體的結合親和力對於藥物篩選和優化至關重要。然而,目前的研究並沒有考慮到分子表面訊息在蛋白質-配體相互作用中的重要作用。基於此,來自廈門大學的研究人員提出了一種新穎的多模態特徵提取(MFE)框架,該框架首次結合了蛋白質表面、3D結構和序列的信息,並使用交叉注意機制進行不同模態之間的特徵對齊。實驗結果表明,該方法在預測蛋白質-配體結合親和力方面取得了最先進的性能。此外,消融研究證明了該框架內蛋白質表面資訊和多模態特徵對齊的有效性和必要性。相關研究以「S

本站8月1日消息,SK海力士今天(8月1日)發布博文,宣布將出席8月6日至8日,在美國加州聖克拉拉舉行的全球半導體記憶體峰會FMS2024,展示諸多新一代產品。未來記憶體和儲存高峰會(FutureMemoryandStorage)簡介前身是主要面向NAND供應商的快閃記憶體高峰會(FlashMemorySummit),在人工智慧技術日益受到關注的背景下,今年重新命名為未來記憶體和儲存高峰會(FutureMemoryandStorage),以邀請DRAM和儲存供應商等更多參與者。新產品SK海力士去年在
