駭客如何使用AI和ML來瞄準企業
網路安全得益於AI和ML的進步。今天的安全團隊被關於潛在可疑活動的數據所淹沒,常常大海撈針。人工智慧透過網路流量、惡意軟體指標和用戶行為趨勢中的模式識別,幫助安全團隊在這些數據中發現真正的威脅。
而駭客常常利用人工智慧和機器學習方面來對付企業。例如輕鬆存取雲端環境,使得開始使用AI並建立強大、有能力的學習模型變得簡單。
讓我們看看駭客如何使用人工智慧和機器學習來瞄準企業,以及防止以人工智慧為重點的網路攻擊的方法。
駭客使用AI對抗安全團隊的3種方式
#1.在基於人工智慧的工具測試惡意軟體是否成功
駭客能以多種方式使用ML。第一種方法是透過建立自己的機器學習環境,並對自己的惡意軟體和攻擊實踐進行建模,以確定安全團隊尋找的事件和行為的類型。
例如,一個複雜的惡意軟體可能會修改本機系統庫和元件,在記憶體中運行進程,並與駭客控制基礎設施擁有的一個或多個域通訊。所有這些活動結合在一起創建了一個稱為戰術、技術和程序(TTP)的配置。機器學習模型可以觀察TTP,並使用它們來建立檢測能力。
透過觀察和預測安全團隊如何偵測TTP,駭客可以巧妙且頻繁地修改指標和行為,領先依賴基於人工智慧的工具來偵測攻擊的安全團隊。
2.用不準確的資料破壞AI模型
#駭客也利用機器學習和人工智慧,用不準確的資料破壞人工智能模型,從而破壞環境。機器學習和人工智慧模型依靠正確標記的資料樣本,來建立準確和可重複的檢測配置檔案。透過引入看起來類似於惡意軟體的良性文件或創建被證明是誤報的行為模式,駭客可以誘騙AI模型,使其相信攻擊行為不是惡意的,還可以透過引入AI訓練標記為安全的惡意文件來毒化AI模型。
3.繪製現有AI模型
駭客積極尋求繪製網路安全供應商和營運團隊使用的現有和正在開發的AI模型。透過了解人工智慧模型的功能及其作用,駭客可以在其週期內積極幹擾機器學習操作和模型。這可以使駭客透過欺騙系統來影響模型,使系統有利於駭客。它還可以讓駭客透過巧妙地修改資料來避開基於已識別模式的檢測,從而完全避開已知模型。
如何防禦以人工智慧為中心的攻擊
#防禦以人工智慧為重點的攻擊是極其困難的。安全團隊必須確保與學習模型和模式開發中使用的資料相關聯的標籤是準確的。透過確保資料具有準確的標籤標識符,用於訓練模型的資料集可能會變得更小,這對人工智慧的效率沒有幫助。
對於那些建立AI安全偵測模型的人來說,在建模時引入對抗技術和策略可以幫助將模式識別與野外看到的策略結合起來。約翰霍普金斯大學的研究人員開發了木馬軟體框架,以幫助產生木馬和其他惡意軟體模式的人工智慧模型。麻省理工學院(MIT)的研究人員發布了一款用於自然語言模式的工具TextFooler,該工具可能有助於建立更具彈性的人工智慧模型,以檢測銀行詐欺等問題。
隨著人工智慧的重要性日益增長,駭客將尋求透過自己的研究來超越安全團隊的努力。對於安全團隊來說,隨時了解駭客的攻擊策略以防禦他們是至關重要的。
以上是駭客如何使用AI和ML來瞄準企業的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

透過將檢索增強生成和語意記憶納入AI編碼助手,提升開發人員的生產力、效率和準確性。譯自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。雖然基本AI程式設計助理自然有幫助,但由於依賴對軟體語言和編寫軟體最常見模式的整體理解,因此常常無法提供最相關和正確的程式碼建議。這些編碼助手產生的代碼適合解決他們負責解決的問題,但通常不符合各個團隊的編碼標準、慣例和風格。這通常會導致需要修改或完善其建議,以便將程式碼接受到應

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

編輯|KX在藥物研發領域,準確有效地預測蛋白質與配體的結合親和力對於藥物篩選和優化至關重要。然而,目前的研究並沒有考慮到分子表面訊息在蛋白質-配體相互作用中的重要作用。基於此,來自廈門大學的研究人員提出了一種新穎的多模態特徵提取(MFE)框架,該框架首次結合了蛋白質表面、3D結構和序列的信息,並使用交叉注意機制進行不同模態之間的特徵對齊。實驗結果表明,該方法在預測蛋白質-配體結合親和力方面取得了最先進的性能。此外,消融研究證明了該框架內蛋白質表面資訊和多模態特徵對齊的有效性和必要性。相關研究以「S

本站7月5日消息,格芯(GlobalFoundries)於今年7月1日發布新聞稿,宣布收購泰戈爾科技(TagoreTechnology)的功率氮化鎵(GaN)技術及智慧財產權組合,希望在汽車、物聯網和人工智慧資料中心應用領域探索更高的效率和更好的效能。隨著生成式人工智慧(GenerativeAI)等技術在數位世界的不斷發展,氮化鎵(GaN)已成為永續高效電源管理(尤其是在資料中心)的關鍵解決方案。本站引述官方公告內容,在本次收購過程中,泰戈爾科技公司工程師團隊將加入格芯,進一步開發氮化鎵技術。 G
