eBay使用機器學習完善促銷列表
譯者| 布加迪
審校| 孫淑娟
線上市場eBay在其機器學習模型中加入了額外的購買訊號,例如「添加到關注清單」、「出價”和“添加到購物車”,根據搜尋的初始商品提高所建議的廣告清單具有的相關性。 Chen Xue在最近的這篇文章中作了非常詳細的介紹。
eBay的促銷清單標準(PLS)是針對賣家的收費選項。使用PLSIM這個選項,eBay的推薦引擎會推薦類似潛在買家剛點擊的某個商品的贊助商品。 PLSIM以CPA模式支付(賣家僅在銷售達成時向eBay付費),因此這對於創建最有效的模式來促銷最佳清單非常有動力。這往往對賣家、買家和eBay都卓有成效。
PLSIM旅程如下:
1. 使用者搜尋商品。
2. 使用者點擊來自搜尋的結果->登入查看商品(VI)頁面,以查看列出的商品(eBay稱之為種子商品)。
3. 使用者向下捲動VI頁面,可在PLSIM中看到推薦的商品。
4. 使用者點擊來自PLSIM的商品,執行操作(觀看、加入購物車和立即購買等),或查看另一組新的推薦商品。
從機器學習的角度來看,PLSIM旅程如下:
- 檢索與種子商品最密切相關的子集候選促銷清單標準(《查全集》)。
- 運用經過訓練的機器學習排序器,依照購買的可能性將查全集中的商品清單進行排序。
- 根據廣告費率對商品清單重新排序,以便將透過促銷實現的賣家銷售速度與推薦相關性作一番權衡。
排序模型
排序模型是基於以下歷史資料:
- #推薦商品的資料
- 與種子商品相似的推薦商品
- 上下文(國家和產品類別)
- 使用者個人化功能
#eBay使用梯度提升樹,對於特定的種子商品而言,該梯度提升樹根據商品的相對購買機率對商品進行排序。
從二元回饋到多重相關回饋
在過去,購買機率依賴二元購買資料。如果是與種子商品一起購買的,它就是「相關」的,不然就是「不相關」的。這是一種失敗的方法,不過有幾個主要的方面可加以優化:
- 漏報:由於用戶通常只從推薦清單中購買一件商品,因此在購買沒有進行的情況下,好的推薦可能被視為不好的推薦,從而導致誤報。
- 購買很少:與其他使用者事件相比,訓練具有足夠購買數量和多樣性的模型來預測正向類別正變得頗具挑戰性。
- 遺漏數據:從點擊到添加到購物車,眾多用戶操作揭示了大量用戶信息,揭示了可能出現的結果。
綜上所述,eBay工程師除了考慮初始點擊以及如何將它們添加到排序模型外,還考慮以下用戶操作:
- 立即購買(僅適用於Buy-It-Now即BIN清單)
- 加入購物車(僅適用於BIN清單)
- 出價(僅適用於最佳出價清單)
- 叫價(僅適用於拍賣清單)
- 新增至關注清單(適用於 BIN、最佳出價或拍賣清單)
使用者介面範例
多重相關回饋的相關程度
eBay現在知道購買極具相關性,因此需要添加其他操作,但新的問題是:這些操作在相關性等級內處於什麼位置?
下圖說明了eBay如何對剩餘的可能操作進行排序——「出價」、「立即購買」、「加入關注清單」和「加入購物車」。
在種子商品的歷史訓練資料中,每個潛在商品都被以下等級標記為相關性等級。
標記的結果是,在訓練期間,排序器對排序錯誤的購買實行的懲罰比排序錯誤的「立即購買」更嚴重,往下依此類推。
多重相關回饋的樣本權重
梯度提升樹支援多個標籤來捕捉一系列相關性,但沒有直接的方法來實現相關性的大小。
eBay不得不迭代運行測試,直到得出使模型工作的數字。研究人員加入了額外的權重(名為「樣本權重」),這些權重被饋送到成對損失函數中。他們優化了超參數調整工作,並運行了25次迭代,然後得出最佳的樣本權重——“添加到關注列表”(6)、“添加到購物車”(15)、“出價”(38 )、「立即購買」(8)和「購買」(15)。如果沒有樣本權重,新模型的表現會較差。有了樣本權重,新模型的表現優於二元模型。
他們嘗試只加入點擊作為額外的相關回饋,並運用經過調整的超參數「Purchase」樣本權重150。下面還顯示了離線結果,其中“BOWC”代表“立即購買”、“出價”、“添加到關注列表”和“添加到購物車”這些操作。購買排序反映了所購商品的平均排序。越小越好。
結論
訓練的模型總共有超過2000個實例。 A/B測試分兩個階段進行。第一階段僅包括額外的選擇標籤,在eBay行動應用程式上的購買數量顯示增加2.97%,廣告收入顯示增加2.66%,被認為足夠成功,可以將模型投入到全球生產環境。
第二階段在模型中加入了更多操作,例如“添加到關注列表”、“添加到購物車”、“出價”和“立即購買”,A/B測試顯示出更好的客戶參與度(例如更多的點擊和BWC)。
原文標題:#EBay Uses Machine Learning to Refine Promoted Listings# #,作者:Jessica Wachtel
#以上是eBay使用機器學習完善促銷列表的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

在機器學習和資料科學領域,模型的可解釋性一直是研究者和實踐者關注的焦點。隨著深度學習和整合方法等複雜模型的廣泛應用,理解模型的決策過程變得尤為重要。可解釋人工智慧(ExplainableAI|XAI)透過提高模型的透明度,幫助建立對機器學習模型的信任和信心。提高模型的透明度可以透過多種複雜模型的廣泛應用等方法來實現,以及用於解釋模型的決策過程。這些方法包括特徵重要性分析、模型預測區間估計、局部可解釋性演算法等。特徵重要性分析可以透過評估模型對輸入特徵的影響程度來解釋模型的決策過程。模型預測區間估計

在iPhone上面臨滯後,緩慢的行動數據連線?通常,手機上蜂窩互聯網的強度取決於幾個因素,例如區域、蜂窩網絡類型、漫遊類型等。您可以採取一些措施來獲得更快、更可靠的蜂窩網路連線。修復1–強制重啟iPhone有時,強制重啟設備只會重置許多內容,包括蜂窩網路連線。步驟1–只需按一次音量調高鍵並放開即可。接下來,按降低音量鍵並再次釋放它。步驟2–過程的下一部分是按住右側的按鈕。讓iPhone完成重啟。啟用蜂窩數據並檢查網路速度。再次檢查修復2–更改資料模式雖然5G提供了更好的網路速度,但在訊號較弱

哭死啊,全球狂煉大模型,一網路的資料不夠用,根本不夠用。訓練模型搞得跟《飢餓遊戲》似的,全球AI研究者,都在苦惱怎麼才能餵飽這群資料大胃王。尤其在多模態任務中,這問題尤其突出。一籌莫展之際,來自人大系的初創團隊,用自家的新模型,率先在國內把「模型生成數據自己餵自己」變成了現實。而且還是理解側和生成側雙管齊下,兩側都能產生高品質、多模態的新數據,對模型本身進行數據反哺。模型是啥?中關村論壇上剛露面的多模態大模型Awaker1.0。團隊是誰?智子引擎。由人大高瓴人工智慧學院博士生高一鑷創立,高

C++中機器學習演算法面臨的常見挑戰包括記憶體管理、多執行緒、效能最佳化和可維護性。解決方案包括使用智慧指標、現代線程庫、SIMD指令和第三方庫,並遵循程式碼風格指南和使用自動化工具。實作案例展示如何利用Eigen函式庫實現線性迴歸演算法,有效地管理記憶體和使用高效能矩陣操作。

最近,軍事圈被這個消息刷屏了:美軍的戰鬥機,已經能由AI完成全自動空戰了。是的,就在最近,美軍的AI戰鬥機首次公開,揭開了神秘面紗。這架戰鬥機的全名是可變穩定性飛行模擬器測試飛機(VISTA),由美空軍部長親自搭乘,模擬了一對一的空戰。 5月2日,美國空軍部長FrankKendall在Edwards空軍基地駕駛X-62AVISTA升空注意,在一小時的飛行中,所有飛行動作都由AI自主完成! Kendall表示——在過去的幾十年中,我們一直在思考自主空對空作戰的無限潛力,但它始終顯得遙不可及。然而如今,

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

譯者|李睿審校|重樓人工智慧(AI)和機器學習(ML)模型如今變得越來越複雜,這些模型產生的產出是黑盒子-無法向利害關係人解釋。可解釋性人工智慧(XAI)致力於透過讓利害關係人理解這些模型的工作方式來解決這個問題,確保他們理解這些模型實際上是如何做出決策的,並確保人工智慧系統中的透明度、信任度和問責制來解決這個問題。本文探討了各種可解釋性人工智慧(XAI)技術,以闡明它們的基本原理。可解釋性人工智慧至關重要的幾個原因信任度和透明度:為了讓人工智慧系統被廣泛接受和信任,使用者需要了解決策是如何做出的

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的
