人工智慧在網路安全中的作用
隨著人工智慧(AI)在社會中的日益普及,也進入了網路安全領域。人工智慧可透過多種方式來幫助改善網路安全,包括自動偵測和回應威脅、提高網路效率、以及幫助識別漏洞。在本文中,將討論到人工智慧改變網路安全的一些方式,以及其如何幫助企業保持網路安全。
人工智慧正在改變網路安全的格局。本文的優勢表明,透過實施人工智慧系統,組織將能夠提高偵測和回應速度,並更積極地預測和處理新出現的威脅。
什麼是人工智慧(AI)?
人工智慧是一種由機器展示的智能,而不是由人類和其他動物展示的自然智能。人工智慧應用程式可以分析數據並自行做出決定,無需人工幹預。
人工智慧是透過評估人腦的過程和研究人腦的模式來實現的。這些威脅調查導致了智慧軟體、系統或人工智慧解決方案的創建。
人工智慧的基礎是基於所謂的人工智慧圖靈測試。人工智慧中的圖靈測試是一種確定機器是否能表現出與人類無法區分的行為的方法。如果這個問題的答案是肯定的,那麼這台機器就通過了圖靈測試,被認為是智慧的。
人工智慧的三個主要組成部分是:
- 人工智慧學習是從經驗中獲取新知識或技能的過程。
- 推理是從一組前提中得出邏輯結論的能力。
- 自我修正是識別和修正錯誤的能力。
人工智慧在網路安全中的作用是什麼?
人工智慧在網路安全方面的作用是幫助組織降低入侵風險,並改善其整體安全狀況。人工智慧透過從過去的數據中學習來識別模式和趨勢,從而在網路安全中發揮作用。然後,這些資訊被用來預測未來的襲擊。人工智慧驅動的系統還可以配置為自動回應威脅,並在更快的時間內對抗網路威脅。
隨著企業攻擊面不斷發展和演變,分析和增強網路威脅和網路攻擊不再是人類面臨的挑戰。根據組織的大小,必須處理多達數千億的時變訊號,以正確計算風險。
為了應對這項前所未有的挑戰,神經網路等人工智慧工具和方法不斷發展,以更有效和高效的威脅偵測和威脅消除功能,幫助資訊安全團隊保護敏感訊息,降低入侵風險,改善安全態勢。
機器學習在網路空間的應用
機器學習是人工智慧的一個子集,其使用演算法自動學習和改進經驗,而無需明確編程。
其主要用於網路安全,有兩個目的:
- 異常偵測: 機器學習可用於自動偵測異常,例如異常的使用者行為或意外的網路活動,這些異常可能表示存在安全威脅。例如,crowdstrike、darktrace等許多產品都在使用這種技術。
- 分類: 機器學習可以用來自動分類數據,如電子郵件或文件,進入分類(如垃圾郵件或惡意軟體),以便更有效地處理。
人工智慧/網路安全難題-潛在的不利因素
我們都很贊同使用人工智慧來解決安全問題。
網路犯罪分子可以訓練人工智慧系統或將錯誤的資料輸入到人工智慧使用的資料集。這將使他們能夠創建更現實和複雜的攻擊。此外,人工智慧可以用於自動攻擊,使單一參與者可以進行大規模攻擊。
人工智慧系統也容易被所謂的「對抗性例子」所欺騙——這些輸入是專門設計用來欺騙系統做出錯誤分類的。例如,一個停車標誌的圖像經過輕微改動,使其不再被識別為停車標誌,這可能會讓自動駕駛汽車誤以為是其他東西,例如讓行標誌。這可能會導致災難性的後果。
隨著人工智慧在網路安全領域的應用越來越廣泛,考慮潛在風險以及如何減輕這些風險非常重要。做到這一點的一種方法是確保人工智慧系統是「可解釋的」——也就是說,它們可以為自己的決定提供理由。這將有助於確保決策是透明的和負責任的,同時也有助於防止對抗性範例被用來欺騙系統。
總之,以人工智慧為基礎的網路安全系統在幫助組織方面展現了巨大的潛力。然而,重要的是,要意識到潛在的風險並採取措施來減輕。
人工智慧如何用於安全?
#人工智慧在網路安全領域有幾個很好的應用案例。從研究人員或智囊團開始,這裡有一個Gartner對網路安全用例棱鏡的很好的例子。自從Gartner的預測以來,超自動化成為了一個備受關注的話題——這意味著另一個量級的自動化將在通用的下一代人工智慧系統的基礎上啟動。這涉及將AI/ML與自動化 品質保證相結合,以簡化警報和事件回應工作的管理。本質上,將有助於企業在規模上增強無程式碼或低程式碼安全性,並提高業務敏捷性和DevOps策略。
以下是安全服務和雲端安全的適用範例清單:
- 交易詐欺偵測
- 基於文件的惡意軟體偵測
- 過程行為分析
- 異常系統行為偵測
- 網路、網域名稱和聲譽評估
- 資產清單和相依性對應最佳化
- 帳戶收購識別
- 自適應運行時存取和授權
- 識別打樣
- 機器與人的區別
- 基於文字的惡意意圖偵測
- 同一人識別
- Web內容視覺化分析
- 安全操作任務自動化
- 業務資料風險分類
- 策略推薦引擎
- 事件關聯
- 危險情報
- 安全姿勢與風險分數
#以下是網路安全領域的人工智慧如何減少識別、偵測和應對網路安全威脅的時間的範例:
(1) 自動化惡意軟體偵測和預防
與傳統的軟體驅動或手動方法相比,人工智慧(AI )和機器學習可以幫助對付網路犯罪分子、自動偵測威脅並更有效地做出回應。機器學習技術可透過結合來自主機、網路和雲端上的反惡意軟體元件的大量資料來改善惡意軟體偵測。
以前未知的樣本可能是惡意軟體和勒索軟體攻擊檢測中的新文件,有助於終端保護機制。其的隱藏屬性可能是惡意的,也可能不是。同樣,能夠避開檢測的惡意軟體也不能保證每次都被捕獲。
這並不代表所有的惡意軟體攻擊都能用人工智慧阻止。該模型是支持資料屬性的數學結構化規則集合。
(2) 網路釣魚和垃圾郵件偵測
深度學習使用大量資料來訓練深度神經網絡,隨後隨著時間的推移學習如何對影像進行分類或完成其他任務。
即使對於特徵相對鬆散的攻擊操作,深度學習模型也能獲得良好的準確率。其被用來檢測不安全的工作和其他圖像以及垃圾郵件和網路釣魚攻擊。
Google利用深度學習來偵測難以偵測的基於影像的電子郵件、含有隱藏內容的電子郵件,以及來自新形成域的通訊。這有助於偵測複雜的網路釣魚攻擊,包括與垃圾郵件相關的網路流量模式。
(3) 更快、更準確的異常檢測-SIEM和SOAR平台
人工智慧可以近乎即時地識別網路流量資料中的惡意和良性異常。透過將機器學習演算法應用於網路流量數據,可以偵測到先前未知的攻擊,以及已經修改以逃避偵測的已知攻擊。
SIEM和SOAR系統增加了組織的安全基礎設施。先進的分析方法和機器學習被用於識別警報,但這需要微調,由於誤報的發生。
SOAR是處理SIEM警告的補救和反應的引擎。其旨在透過收集警報、管理案例和回應SIEM永無止境的通知來幫助安全團隊自動化回應流程。
威脅情報能力是其解決方案之一,讓安全團隊不僅可以跨電腦系統,還可以更深入地了解其他威脅、了解IOT設備和其他整合。
(4) 尋找零時差漏洞
在「零時差攻擊」中,犯罪者利用一個尚未被製造商修補的軟體缺陷,用惡意軟體感染電腦。然而,人工智慧目前的討論和發展可能會有所幫助。
深度學習架構可以用於發現隱藏或潛在的模式,並隨著時間的推移變得更加環境敏感,這有助於識別零日漏洞或活動。自然語言處理可以掃描原始程式碼中的危險檔案並標記它們。 「生成對抗網路」可以學習模仿任何資料分佈,也可以在識別複雜缺陷方面有用。
(5) 提高偵測和回應速度
保護企業網路的第一步是偵測威脅。如果能快速偵測出不可靠的數據,那是再理想不過的事了。其將保護網路免受永久損壞。
將人工智慧與網路安全結合是即時偵測和應對威脅的最佳方式。人工智慧會檢查整個系統是否有風險。與人類智慧不同的是,網路領域的人工智慧能夠及早發現風險,從而產生更快、更準確的安全警報,使網路安全專家的工作更有效率。
(6) 偵測新威脅
用於識別異常行為或活動模式的預測分析是人工智慧在網路安全領域的主要應用之一。網路犯罪分子一直在尋找利用系統的新方法。人工智慧可以幫助識別這些新威脅,在它們造成任何損害之前。
(7) 減少誤報的數量
當誤報太多時,會佔用原本可以用來解決實際問題的時間。但透過人工智慧來識別安全事件,就可以減少誤報的數量,使團隊迅速恢復工作。
在資料科學的幫助下,人工智慧可以快速分析大量的事件,並識別廣泛的安全風險,從惡意軟體到可能導致網路釣魚或惡意程式碼下載的風險行為威脅識別。這些系統隨著時間的推移而改進,利用先前的攻擊來識別當前的新型攻擊。行為歷史透過創建使用者、資產和網路的檔案,來幫助人工智慧識別和應對偏離既定規範的行為。
人工智慧系統正在接受訓練,以檢測惡意軟體,執行模式識別,並使用高級演算法在惡意軟體或勒索軟體攻擊進入系統之前,檢測出哪怕是最微小的特徵。
透過自然語言處理,人工智慧可以透過抓取有關網路危險的文章、新聞和研究,並自行整理資料來提供更高的預測智慧。基於人工智慧的安全解決方案,可以提供有關全球和特定行業威脅的最新知識,根據最有可能被用於攻擊系統的內容,而不是可能被用於攻擊系統的內容,做出更明智的優先決策。
(8) 偵測機器人
現在,機器人佔據了網路流量的很大一部分,但它們可能是致命的。從使用竊取的密碼進行帳戶接管到欺詐性帳戶創建和資料欺詐,機器人程式可能是一個嚴重的威脅。手動反應對於自動威脅是無效的。人工智慧和機器學習可以幫助分析網站流量,以及區分好機器人、壞機器人和人類。
透過分析使用者行為模式,企業可以了解典型的使用者體驗是什麼樣子,以及不常見的高風險體驗是什麼樣子。我們可以從這裡破解他們網路通訊的目的,使我們領先於邪惡機器人。
(9) 入侵風險預測
人工智慧系統幫助確定IT資產清單,這是一份完整而準確的清單,列出了對各種系統具有不同存取權限的所有裝置、使用者和應用程式。現在,考慮到資產庫存和威脅暴露(如上所述),基於人工智慧的系統可以預測最可能被駭客攻擊的方式和地點,從而計劃將資源投入到最薄弱的位置。
這種入侵風險預測將有助於組織隨時準備限制影響並打破攻擊鏈。此外,利用風險數據,可以透過基於人工智慧的分析,制定和修改策略和程序,以增強網路彈性。
總結
顯而易見,人工智慧可以成為打擊網路犯罪的有力工具。透過自動化,人類安全分析師目前執行的任務,可以減少誤報的數量,並加快檢測和回應的過程。
更重要的是,要意識到與使用人工智慧相關的潛在風險,並採取措施減輕它們。
以上是人工智慧在網路安全中的作用的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

透過將檢索增強生成和語意記憶納入AI編碼助手,提升開發人員的生產力、效率和準確性。譯自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。雖然基本AI程式設計助理自然有幫助,但由於依賴對軟體語言和編寫軟體最常見模式的整體理解,因此常常無法提供最相關和正確的程式碼建議。這些編碼助手產生的代碼適合解決他們負責解決的問題,但通常不符合各個團隊的編碼標準、慣例和風格。這通常會導致需要修改或完善其建議,以便將程式碼接受到應

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

編輯|KX在藥物研發領域,準確有效地預測蛋白質與配體的結合親和力對於藥物篩選和優化至關重要。然而,目前的研究並沒有考慮到分子表面訊息在蛋白質-配體相互作用中的重要作用。基於此,來自廈門大學的研究人員提出了一種新穎的多模態特徵提取(MFE)框架,該框架首次結合了蛋白質表面、3D結構和序列的信息,並使用交叉注意機制進行不同模態之間的特徵對齊。實驗結果表明,該方法在預測蛋白質-配體結合親和力方面取得了最先進的性能。此外,消融研究證明了該框架內蛋白質表面資訊和多模態特徵對齊的有效性和必要性。相關研究以「S

本站8月1日消息,SK海力士今天(8月1日)發布博文,宣布將出席8月6日至8日,在美國加州聖克拉拉舉行的全球半導體記憶體峰會FMS2024,展示諸多新一代產品。未來記憶體和儲存高峰會(FutureMemoryandStorage)簡介前身是主要面向NAND供應商的快閃記憶體高峰會(FlashMemorySummit),在人工智慧技術日益受到關注的背景下,今年重新命名為未來記憶體和儲存高峰會(FutureMemoryandStorage),以邀請DRAM和儲存供應商等更多參與者。新產品SK海力士去年在
