目錄
調試記憶體洩漏問題
逐行手動偵錯
Python 裝飾器
上下文裝飾器
使用ContextDecorator 找出記憶體洩漏
總結
首頁 後端開發 Python教學 使用上下文裝飾器調試Pytorch的記憶體洩漏問題

使用上下文裝飾器調試Pytorch的記憶體洩漏問題

Apr 10, 2023 am 11:31 AM
python 裝飾器 內存洩漏

裝飾器是 python 上下文管理器的特定實作。本片文章將透過一個pytorch  GPU 調試的範例來說明如何使用它們。雖然它可能不適用於所有情況,但我它們卻非常有用。

使用上下文裝飾器調試Pytorch的記憶體洩漏問題

調試記憶體洩漏問題

有很多方法可以偵錯記憶體洩漏。本文將展示一種識別程式碼中有問題的行的有用方法。此方法可以有助於以簡潔的方式找到具體的位置。

逐行手動偵錯

如果遇到問題,一種經典的且常用的方法是使用偵錯器逐行檢查,例如下面的例子:

  • 在搜尋引擎中尋找如何計算pytorch 中所有張量總數的程式碼片段,例如:tensor-counter-snippet
  • #在程式碼中設定斷點
  • 使用tensor-counter -snippet來獲得張量的總數統計
  • 使用調試器執行下一步操作
  • 重新運行tensor-counter-snippet,並檢查張量計數是否增加
  • 重複上面的步驟

它可以工作,但這樣的操作光聽起來來就很麻煩。我們可以將其封裝成函數,這樣可以在需要的時候調用,這樣幾乎不需要修改現有的程式碼,所以就引出了我們要介紹裝飾器的功能。

Python 裝飾器

裝飾器可以包裝在程式碼的任意部分。這裡我們透過裝飾器來完成檢查是否有額外的張量 ,除此以外我們還需要一個計數器,因為需要在執行之前和之後計算張量的數量。模式如下所示:

def memleak_wrapper(func):
def wrap(*args, **kwargs):
print("num tensors start is ...")
out = func(*args, **kwargs)
print("num tensors end is ...")
return out
return wrap@memleak_wrapper
 def function_to_debug(x):
print(f"put line(s) of code here. Input is {x}")
out = x + 10
return outout = function_to_debug(x=1000)
 print(f"out is {out}")
 
 #输入类似这样
 #num tensors start is ...
 #put line(s) of code here. Input is 1000
 #num tensors end is ...
 #outis 1010
登入後複製

要執行這個程式碼,我們就需要將要檢查的程式碼行放入函數 (function_to_debug)。但這不是最好的,因為我們還需要手動插入很多程式碼。另外就是如果程式碼區塊產生的變數多於一個,還需要尋找額外的解決方案來使用這些下游變數。

上下文裝飾器

為了解決上面問題,我們的可以使用上下文管理器來取代函數裝飾器。上下文管理器最廣泛使用的範例是使用 with 語句實例化上下文。以前最常見的就是:

with open("file") as f:
…
登入後複製

使用Python的contextlib函式庫,Python使用者可以輕鬆地自行建立上下文管理器。所以本文中我們將使用ContextDecorator完成在上面嘗試使用decorator所做的工作。因為它但更容易開發,也更容易使用:

 from contextlib import ContextDecorator
 
 class check_memory_leak_context(ContextDecorator):
def __enter__(self):
print('Starting')
return self
 
def __exit__(self, *exc):
print('Finishing')
return False
登入後複製

ContextDecorator 有2 個方法:enter() 和 exit() ,當我們進入或退出上下文時會呼叫它們。 __exit__ 中的 *exc 參數代表任何傳入的例外。

現在我們來用它來解決上面說的問題。

使用ContextDecorator 找出記憶體洩漏

因為要計算張量的總數,所以我們將計算過程封裝成一個函數get_n_tensors() ,這樣可以在上下文開始和結束時來計算張數量:

class check_memory_leak_context(ContextDecorator):
def __enter__(self):
self.start = get_n_tensors()
return self def __exit__(self, *exc):
self.end = get_n_tensors()
increase = self.end — self.start
 
if increase > 0:
print(f”num tensors increased with"
f"{self.end — self.start} !”)
else:
print(”no added tensors”)
return False
登入後複製

如果有增加,則將其列印到控制台。

get_n_tensor()使用垃圾收集器(gc),是為pytorch定制的,但可以輕鬆修改為其他的庫:

 import gc
 def get_n_tensors():
tensors= []
for obj in gc.get_objects():
try:
if (torch.is_tensor(obj) or
(hasattr(obj, ‘data’) and
torch.is_tensor(obj.data))):
tensors.append(obj)
except:
pass
return len(tensors)
登入後複製

現在就可以使用了,我們對任何一行(或區塊)程式碼使用這個上下文:

 x = arbitrary_operation(x)
 ...
 with check_memory_leak_context():
y = x[0].permute(1, 2, 0).cpu().detach().numpy()
x = some_harmless_operation()
 ...
 x = another_arbitrary_operation(x)
登入後複製

如果上下文修飾器包裝的行內建立了一個新的張量,它就會列印出來。

總結

這是一個非常好的程式碼片段,你可以在開發過程中把它放在一個單獨的檔案中,下面是本文的完整程式碼:

https://gist.github.com/MarkTension/4783697ebd5212ba500cdd829b364338

最後希望這篇小文章能讓你了解什麼是上下文管理器,如何使用上下文裝飾器,以及如何將它們應用於調試pytorch 。

以上是使用上下文裝飾器調試Pytorch的記憶體洩漏問題的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

PHP和Python:解釋了不同的範例 PHP和Python:解釋了不同的範例 Apr 18, 2025 am 12:26 AM

PHP主要是過程式編程,但也支持面向對象編程(OOP);Python支持多種範式,包括OOP、函數式和過程式編程。 PHP適合web開發,Python適用於多種應用,如數據分析和機器學習。

在PHP和Python之間進行選擇:指南 在PHP和Python之間進行選擇:指南 Apr 18, 2025 am 12:24 AM

PHP適合網頁開發和快速原型開發,Python適用於數據科學和機器學習。 1.PHP用於動態網頁開發,語法簡單,適合快速開發。 2.Python語法簡潔,適用於多領域,庫生態系統強大。

Python vs. JavaScript:學習曲線和易用性 Python vs. JavaScript:學習曲線和易用性 Apr 16, 2025 am 12:12 AM

Python更適合初學者,學習曲線平緩,語法簡潔;JavaScript適合前端開發,學習曲線較陡,語法靈活。 1.Python語法直觀,適用於數據科學和後端開發。 2.JavaScript靈活,廣泛用於前端和服務器端編程。

PHP和Python:深入了解他們的歷史 PHP和Python:深入了解他們的歷史 Apr 18, 2025 am 12:25 AM

PHP起源於1994年,由RasmusLerdorf開發,最初用於跟踪網站訪問者,逐漸演變為服務器端腳本語言,廣泛應用於網頁開發。 Python由GuidovanRossum於1980年代末開發,1991年首次發布,強調代碼可讀性和簡潔性,適用於科學計算、數據分析等領域。

vs code 可以在 Windows 8 中運行嗎 vs code 可以在 Windows 8 中運行嗎 Apr 15, 2025 pm 07:24 PM

VS Code可以在Windows 8上運行,但體驗可能不佳。首先確保系統已更新到最新補丁,然後下載與系統架構匹配的VS Code安裝包,按照提示安裝。安裝後,注意某些擴展程序可能與Windows 8不兼容,需要尋找替代擴展或在虛擬機中使用更新的Windows系統。安裝必要的擴展,檢查是否正常工作。儘管VS Code在Windows 8上可行,但建議升級到更新的Windows系統以獲得更好的開發體驗和安全保障。

visual studio code 可以用於 python 嗎 visual studio code 可以用於 python 嗎 Apr 15, 2025 pm 08:18 PM

VS Code 可用於編寫 Python,並提供許多功能,使其成為開發 Python 應用程序的理想工具。它允許用戶:安裝 Python 擴展,以獲得代碼補全、語法高亮和調試等功能。使用調試器逐步跟踪代碼,查找和修復錯誤。集成 Git,進行版本控制。使用代碼格式化工具,保持代碼一致性。使用 Linting 工具,提前發現潛在問題。

notepad 怎麼運行python notepad 怎麼運行python Apr 16, 2025 pm 07:33 PM

在 Notepad 中運行 Python 代碼需要安裝 Python 可執行文件和 NppExec 插件。安裝 Python 並為其添加 PATH 後,在 NppExec 插件中配置命令為“python”、參數為“{CURRENT_DIRECTORY}{FILE_NAME}”,即可在 Notepad 中通過快捷鍵“F6”運行 Python 代碼。

vscode 擴展是否是惡意的 vscode 擴展是否是惡意的 Apr 15, 2025 pm 07:57 PM

VS Code 擴展存在惡意風險,例如隱藏惡意代碼、利用漏洞、偽裝成合法擴展。識別惡意擴展的方法包括:檢查發布者、閱讀評論、檢查代碼、謹慎安裝。安全措施還包括:安全意識、良好習慣、定期更新和殺毒軟件。

See all articles