人工智慧是專家協助和病患照護的推薦處方
譯者| 崔皓
審校| 孫淑娟
#開篇
人工智慧(AI)為各行業的創新提供無限動力,當然也包括醫療保健領域。醫療專業人員受益於機器學習 (ML) 的應用,讓他們可以處理電子健康記錄 (EHR) ,也提升診斷和治療方面的能力。 AI 不僅消除了人為因素對醫療保健的影響,自動化和ML 同時也在提高護士和醫生的工作效率,並為他們提供更深層次的洞察力,從而有更多的時間為患者提供更好、更個性化的醫療服務。
人工智慧對醫療保健帶來的好處不僅於此,在處理醫療文件方面,人工智慧的自動化處理方式可以減輕重複性任務,同時也減少人為的錯誤。同時,人工智慧也被用於提高外科醫生工作效率和加速醫療程序方面,讓患者體驗個人化治療並簡化就診流程。除此之外,人工智慧驅動的學習演算法正在改進診斷成像和識別感染模式。
雖然人工智慧為醫療保健帶來了許多便利,但是人工智慧的解決方案受到軟體開發成本和支援程式複雜性的限制。此外,醫學專家經常抱怨人工智慧技術缺乏可解釋性以及對最終解決方案缺乏敏感性分析。但幸運的是,無程式碼的人工智慧解決方案正在將人工智慧控制權交到醫生手中。
人工智慧如何改變醫療保健領域
人工智慧正在許多方面提高護理效率和質量,在管理方便的提升尤為顯著。
美國的普通護理師平均將 25% 的時間花在監管和行政任務上,人工智慧可以將許多任務自動化。電子健康記錄 (EHR) 和自動化監管系統的應用減少了護理人員的管理工作量,讓他們有更多時間照顧病人。將重複性任務進行自動化處理,例如填寫入學表格、記筆記和安排後續看診,還可以消除資料輸入錯誤並簡化管理任務。雖然人工智慧使管理任務更加高效,但護理人員仍需要負責病人的護理工作。如果提供無程式碼 AI 流程等自助服務工具,護理師就可以根據特定的管理程序設計自己的工作流程。
人工智慧也被用來簡化醫療方面的工作。虛擬護理師可以詢問病人症狀並提供有關健康問題和藥物的信息,當患者無法預約看醫生時,這也是一個有效的問診方式。此外,利用機器學習技術和生物感測技術獲取病人數據,可以有效實現個人化治療。當然,人工智慧也被用於健康監測和促進患者健康等領域。
人工智慧和機器學習可以處理大量的機器資料。醫療保健領域目前產生了全球約 30% 的數據,預計到 2025 年,醫療保健數據的複合年增長率 (CAGR) 將達到 36%。人工智慧可以應用深度學習方法來評估和標準化大型非結構化資料集,從而使用這些資料進行分析和臨床應用。
人工智慧也提高了醫療診斷的準確性。例如,使用人工智慧技術,電腦可用於掃描 MRI,進而提升檢測腫瘤的準確度。智慧型裝置也被部署在 ICU 和臨床環境中,以監測患者並識別諸如心律不整發生、治療併發症或敗血症感染等問題的發生。同時人工智慧也在加強醫生拯救能力方面發揮著重要的作用,為此人工智慧提供了自動異常檢測,它可以在結腸鏡檢查期間提供即時結腸息肉檢測,並透過使用先進的成像技術和人工智慧引擎在乳房X 光檢查中檢測細微的癌細胞,而在使用這項技術之前這些細胞經常被緻密的乳腺組織掩蓋,導致難以被發現。
藥物探索是人工智慧產生重大影響的另一個領域。例如,製藥公司正在使用人工智慧設計新分子來治療癌症和其他疾病。
在醫療保健中使用人工智慧的挑戰
雖然人工智慧繼續在醫療保健領域找到新的應用,但仍面臨以下挑戰:
- 數據治理-HIPAA 等隱私法規旨在保護病患數據,但也可能阻礙自動化應用的發展。為了讓人工智慧繼續在治療和 EHR 管理中找到新的應用,需要考慮隱私法帶來的影響。
- 優化電子記錄-資料往往分散在多個資料庫中,每類資料都有自己的資料結構。因此,需要對碎片化的信息進行集中化和規範化的處理,從而支持對患者的治療。
- 缺乏資料科學家—人工智慧專家持續短缺。數據科學家的需求量很大,美國勞工統計局估計到 2030 年需求將增加 33%。
為了應對這些挑戰並充分利用 AI 技術,醫療保健專業人員正在使用無程式碼平台建立自己的 AI 解決方案。讓醫學專家負責應用程式設計,能夠更輕鬆、更快速地創建人工智慧驅動的流程,以滿足管理和患者的需求,並符合法規要求。
無程式碼人工智慧的價值
有很多情況都需要無程式碼AI的應用:
AI 非常適合重複性任務,例如資料輸入、病患記錄維護或表格填寫。人工智慧越來越多地用於捕獲和處理數據,包括數據分類、數據提取和數據驗證,以將資訊與其他數據源進行匹配。
人工智慧對診斷很有效,因為它可以整合和分析來自多個資料來源的資訊。例如,人工智慧可以將症狀與可能的原因相匹配,使醫生能夠從超出其專業知識的診斷數據中獲取信息,並減少誤診的可能性。人工智慧可以進行「假設」場景的模擬,透過這種方式幫助找出疾病原因。
機器學習讓透過學習演算法來改善結果成為可能。與訓練資料的交互可提供額外的見解並改善其結果。機器學習演算法有助於診斷和治療,並創建患者的輪廓。人工智慧提升工作效率,節省護理師和醫生的時間,進而降低醫院營運成本。
隨著人工智慧越來越多地應用於醫療保健領域,您還可以期待看到更多低程式碼/無程式碼工具的出現,以幫助醫療保健專業人員設計自己的解決方案。讓專家負責建立自己的應用程序,這種不依賴開發人員的模式將是AI 應用的最佳方式。
很明顯,人工智慧正在改變我們的醫療保健方式。使用 AI 和 ML 自動執行日常任務並添加新的診斷和治療解決方案將使醫生和護士的工作效率倍增,從而有更多的時間做他們最擅長的事情——治療患者並改善他們的生活。
譯者介紹
崔皓,51CTO社群編輯,資深架構師,擁有18年的軟體開發與架構經驗,10年分散式架構經驗。曾任惠普技術專家。樂於分享,寫了許多熱門科技文章,閱讀量超過60萬。 《分散式架構原理與實務》作者。
原文標題:#Doctors Find Artificial Intelligence is the Best Prescription for Expert Assistance and Patient Care##,作者:Amir Atai
以上是人工智慧是專家協助和病患照護的推薦處方的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

透過將檢索增強生成和語意記憶納入AI編碼助手,提升開發人員的生產力、效率和準確性。譯自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。雖然基本AI程式設計助理自然有幫助,但由於依賴對軟體語言和編寫軟體最常見模式的整體理解,因此常常無法提供最相關和正確的程式碼建議。這些編碼助手產生的代碼適合解決他們負責解決的問題,但通常不符合各個團隊的編碼標準、慣例和風格。這通常會導致需要修改或完善其建議,以便將程式碼接受到應

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

編輯|KX在藥物研發領域,準確有效地預測蛋白質與配體的結合親和力對於藥物篩選和優化至關重要。然而,目前的研究並沒有考慮到分子表面訊息在蛋白質-配體相互作用中的重要作用。基於此,來自廈門大學的研究人員提出了一種新穎的多模態特徵提取(MFE)框架,該框架首次結合了蛋白質表面、3D結構和序列的信息,並使用交叉注意機制進行不同模態之間的特徵對齊。實驗結果表明,該方法在預測蛋白質-配體結合親和力方面取得了最先進的性能。此外,消融研究證明了該框架內蛋白質表面資訊和多模態特徵對齊的有效性和必要性。相關研究以「S

本站8月1日消息,SK海力士今天(8月1日)發布博文,宣布將出席8月6日至8日,在美國加州聖克拉拉舉行的全球半導體記憶體峰會FMS2024,展示諸多新一代產品。未來記憶體和儲存高峰會(FutureMemoryandStorage)簡介前身是主要面向NAND供應商的快閃記憶體高峰會(FlashMemorySummit),在人工智慧技術日益受到關注的背景下,今年重新命名為未來記憶體和儲存高峰會(FutureMemoryandStorage),以邀請DRAM和儲存供應商等更多參與者。新產品SK海力士去年在
