目錄
比DALL·E 2和Imagen更有效率
從上到下依序為:預訓練的文字編碼器、基礎模型、超解析度模型
FID上獲SOTA分數
研究團隊
首頁 科技週邊 人工智慧 效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

Apr 11, 2023 pm 01:49 PM
模型 效果 muse

新年伊始,GoogleAI又開始發力文字-圖像生成模型了。

這次,他們的新模型Muse(繆斯)在CC3M資料集上達成了新SOTA(目前最佳水準)。

且其效率遠超熱門全球的DALL·E 2和Imagen (這兩個都屬於擴散模型),以及Parti (屬於自回歸模型)。

——單張512x512解析度影像的生成時間被壓縮到僅1.3秒。

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

在影像編輯方面,只需一句文字指令,就可以對原始影像進行編輯。

(似乎不用再為學ps頭禿了~)

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

#如果想要效果更精準,還能選定遮罩位置,編輯特定區域。例如,把背景的建築換成熱氣球。

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

Muse一經官宣,很快就吸引了大波關注,目前原貼已收穫4000 點讚。

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

看到Google的又一力作,有人甚至已經開始預言:

現在AI開發者的競爭非常激烈,看來2023將會是非常精彩的一年。

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS
效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

比DALL·E 2和Imagen更有效率

說回Google剛剛公開的Muse。

首先,就生成圖片的品質來說,Muse的作品大都畫質清晰、效果自然。

來看看更多例子感受一下~

例如戴著毛線帽的樹懶寶寶正在操作電腦;再例如酒杯中的一隻羊:

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

平時八竿子打不著的各種主體,在一張圖裡和諧共存,沒啥違和感。

要是你覺得這些還只能算AIGC的基操,那不妨再看看Muse的編輯功能。

例如一鍵換裝(還能換性別):

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

這既不需要加什麼遮罩,還能一句話搞定。

而如果用上遮罩的話,就能實現更6的操作,包括一鍵切換背景,從原地切換到紐約、巴黎、再到舊金山。


還能從海邊到倫敦、到花海,甚至飛到太空中的土星環上,玩一把刺激的滑板海豚跳。

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

(好傢伙,不僅能輕鬆雲旅遊,還能一鍵上天......)

效果著實挺出色。那Muse背後都有哪些技術支援?為什麼效率比DALL·E 2和Imagen更高?

一個重要的原因是,DALL·E 2和Imagen在訓練過程中,需要將所有學到的知識都儲存在模型參數中。

於是,它們不得不需要越來越大的模型、越來越多的訓練資料來獲取更多知識——將Better和Bigger綁在了一起。

代價就是參數量龐大,效率也受到了影響。

而根據GoogleAI團隊介紹,他們採用的主要方法名曰:掩碼影像建模 (Masked image modeling)。

這是一種新興的自我監督預訓練方法,其基本想法簡單來說就是:

輸入影像的一部分被隨機屏蔽掉,然後透過預訓練文字任務進行重建。

Muse模型在離散標記的空間遮罩上訓練,並結合從預訓練語言大模型中提取的文本,預測隨機遮蔽的圖像標記。

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

從上到下依序為:預訓練的文字編碼器、基礎模型、超解析度模型

Google團隊發現,使用預先訓練好的大語言模型,可以讓AI對語言的理解更加細緻透徹。

就輸出而言,由於AI對物體的空間關係、姿態等要素把握得很不錯,所以生成的圖像可以做到高保真。

與DALL·E 2、Imagen等像素空間的擴散模型相比,Muse用的是離散的token,且取樣迭代較少。

另外,和Parti等自迴歸模型相比,Muse使用了平行解碼,效率也更高。

FID上獲SOTA分數

前文提到,Muse不僅在效率上取得了提升,在生成影像品質上也非常優秀。

研究者把它與DALL·E、LAFITE、LDM、GLIDE、DALL·E 2,以及谷歌自家的Imagen和Parti進行PK,測試了它們的FID和CLIP分數。

(FID分數用於評估生成影像的質量,分數越低質量越高;CLIP分數則代表文字與影像的契合程度,分數越高越好。)

結果顯示,Muse-3B模型在COCO驗證集中的zero-shot FID-30K得分為7.88,僅次於參數較大的Imagen-3.4B和Parti-20B模型。

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

更優秀的是,Muse-900M模型在CC3M資料集上實現了新的SOTA,FID分數為6.06,這也意味著它與文字的匹配度是最高的。

同時,此模型的CLIP分數為0.26,也達到了同期最高水準。

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

除此之外,為了進一步證實Muse的出圖效率,研究者也比較了Muse與其他模型的單張影像產生時間:

#在256x256、512x512的解析度上Muse均達到了最快速度:0.5s和1.3s。

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

研究團隊

Muse的研究團隊來自Google,兩位共同一作分別是Huiwen Chang和Han Zhang。

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

Huiwen Chang,現為Google資深研究員。

她本科就讀於清華大學,博士畢業於普林斯頓大學,有在Adobe、Facebook等的實習經驗。

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

Han Zhang,本科畢業於中國農業大學,碩士就讀於北京郵電大學,後在羅格斯大學取得了電腦科學博士學位。

其研究方向為電腦視覺,深度學習和醫學影像分析等。

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

不過值得一提的是,目前Muse還沒有正式發布。

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

有網友調侃,雖然它應該很香,但以穀歌的“尿性”,Muse離正式發布可能還有很長時間——畢竟他們還有18年的AI都沒發呢。

效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS

話說回來,你覺得Muse的效果怎麼樣?

對於其正式發布之事,有木有一點期待?

傳送門:​​https://www.php.cn/link/854f1fb6f65734d9e49f708d6cd84ad6​

參考鏈接:https://twitter.com/AlphaSignalAI/status/ 1610404589966180360

以上是效率碾壓DALL·E 2和Imagen,Google新模型達成新SOTA,還能一句話搞定PS的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

<🎜>:泡泡膠模擬器無窮大 - 如何獲取和使用皇家鑰匙
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
北端:融合系統,解釋
3 週前 By 尊渡假赌尊渡假赌尊渡假赌
Mandragora:巫婆樹的耳語 - 如何解鎖抓鉤
3 週前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

熱門話題

Java教學
1664
14
CakePHP 教程
1423
52
Laravel 教程
1321
25
PHP教程
1269
29
C# 教程
1249
24
全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 全球最強開源 MoE 模型來了,中文能力比肩 GPT-4,價格僅 GPT-4-Turbo 的近百分之一 May 07, 2024 pm 04:13 PM

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 AI顛覆數學研究!菲爾茲獎得主、華裔數學家領銜11篇頂刊論文|陶哲軒轉贊 Apr 09, 2024 am 11:52 AM

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

替代MLP的KAN,被開源專案擴展到卷積了 替代MLP的KAN,被開源專案擴展到卷積了 Jun 01, 2024 pm 10:03 PM

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 你好,電動Atlas!波士頓動力機器人復活,180度詭異動作嚇到馬斯克 Apr 18, 2024 pm 07:58 PM

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! 特斯拉機器人進廠打工,馬斯克:手的自由度今年將達到22個! May 06, 2024 pm 04:13 PM

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

FisheyeDetNet:首個以魚眼相機為基礎的目標偵測演算法 FisheyeDetNet:首個以魚眼相機為基礎的目標偵測演算法 Apr 26, 2024 am 11:37 AM

目標偵測在自動駕駛系統當中是一個比較成熟的問題,其中行人偵測是最早得以部署演算法之一。在多數論文當中已經進行了非常全面的研究。然而,利用魚眼相機進行環視的距離感知相對來說研究較少。由於徑向畸變大,標準的邊界框表示在魚眼相機當中很難實施。為了緩解上述描述,我們探索了擴展邊界框、橢圓、通用多邊形設計為極座標/角度表示,並定義一個實例分割mIOU度量來分析這些表示。所提出的具有多邊形形狀的模型fisheyeDetNet優於其他模型,並同時在用於自動駕駛的Valeo魚眼相機資料集上實現了49.5%的mAP

牛津大學最新! Mickey:3D中的2D影像匹配SOTA! (CVPR\'24) 牛津大學最新! Mickey:3D中的2D影像匹配SOTA! (CVPR\'24) Apr 23, 2024 pm 01:20 PM

寫在前面項目連結:https://nianticlabs.github.io/mickey/給定兩張圖片,可以透過建立圖片之間的對應關係來估計它們之間的相機姿態。通常,這些對應關係是二維到二維的,而我們估計的姿態在尺度上是不確定的。一些應用,例如隨時隨地實現即時增強現實,需要尺度度量的姿態估計,因此它們依賴外部的深度估計器來恢復尺度。本文提出了MicKey,這是一個關鍵點匹配流程,能夠夠預測三維相機空間中的度量對應關係。透過學習跨影像的三維座標匹配,我們能夠在沒有深度測試的情況下推斷度量相對

輕鬆拿捏 4K 高畫質影像理解!這個多模態大模型自動分析網頁海報內容,打工人簡直不要太方便 輕鬆拿捏 4K 高畫質影像理解!這個多模態大模型自動分析網頁海報內容,打工人簡直不要太方便 Apr 23, 2024 am 08:04 AM

一個可以自動分析PDF、網頁、海報、Excel圖表內容的大模型,對於打工人來說簡直不要太方便。上海AILab,香港中文大學等研究機構提出的InternLM-XComposer2-4KHD(簡寫為IXC2-4KHD)模型讓這一切成為了現實。相較於其他多模態大模型不超過1500x1500的分辨率限制,該工作將多模態大模型的最大輸入影像提升到超過4K(3840x1600)分辨率,並支援任意長寬比和336像素~4K動態解析度變化。發布三天,模型就登頂HuggingFace視覺問答模型熱度排行榜第一。輕鬆拿捏

See all articles