七個流行的強化學習演算法及程式碼實現
目前流行的強化學習演算法包括 Q-learning、SARSA、DDPG、A2C、PPO、DQN 和 TRPO。這些演算法已被用於在遊戲、機器人和決策等各種應用中,而這些流行的演算法仍在不斷發展和改進,本文我們將對其做一個簡單的介紹。
1、Q-learning
Q-learning:Q-learning 是一種無模型、非策略的強化學習演算法。它使用 Bellman 方程式估計最佳動作值函數,該方程式迭代地更新給定狀態動作對的估計值。 Q-learning 以其簡單性和處理大型連續狀態空間的能力而聞名。
以下是使用 Python 實作 Q-learning 的簡單範例:
import numpy as np # Define the Q-table and the learning rate Q = np.zeros((state_space_size, action_space_size)) alpha = 0.1 # Define the exploration rate and discount factor epsilon = 0.1 gamma = 0.99 for episode in range(num_episodes): current_state = initial_state while not done: # Choose an action using an epsilon-greedy policy if np.random.uniform(0, 1) < epsilon: action = np.random.randint(0, action_space_size) else: action = np.argmax(Q[current_state]) # Take the action and observe the next state and reward next_state, reward, done = take_action(current_state, action) # Update the Q-table using the Bellman equation Q[current_state, action] = Q[current_state, action] + alpha * (reward + gamma * np.max(Q[next_state]) - Q[current_state, action]) current_state = next_state
在上面的範例中,state_space_size 和 action_space_size 分別是環境中的狀態數和動作數。 num_episodes 是要為運行演算法的輪次數。 initial_state 是環境的起始狀態。 take_action(current_state, action) 是一個函數,它將當前狀態和一個動作作為輸入,並傳回下一個狀態、獎勵和一個指示輪次是否完成的布林值。
在 while 迴圈中,使用 epsilon-greedy 策略根據目前狀態選擇一個動作。使用機率 epsilon選擇一個隨機動作,使用機率 1-epsilon選擇對目前狀態具有最高 Q 值的動作。
採取行動後,觀察下一個狀態和獎勵,使用Bellman方程式更新q。並將目前狀態更新為下一個狀態。這只是 Q-learning 的一個簡單範例,並未考慮 Q-table 的初始化和要解決的問題的具體細節。
2、SARSA
SARSA:SARSA 是一種無模型、基於策略的強化學習演算法。它也使用Bellman方程式來估計動作價值函數,但它是基於下一個動作的期望值,而不是像 Q-learning 中的最優動作。 SARSA 以其處理隨機動力學問題的能力而聞名。
import numpy as np # Define the Q-table and the learning rate Q = np.zeros((state_space_size, action_space_size)) alpha = 0.1 # Define the exploration rate and discount factor epsilon = 0.1 gamma = 0.99 for episode in range(num_episodes): current_state = initial_state action = epsilon_greedy_policy(epsilon, Q, current_state) while not done: # Take the action and observe the next state and reward next_state, reward, done = take_action(current_state, action) # Choose next action using epsilon-greedy policy next_action = epsilon_greedy_policy(epsilon, Q, next_state) # Update the Q-table using the Bellman equation Q[current_state, action] = Q[current_state, action] + alpha * (reward + gamma * Q[next_state, next_action] - Q[current_state, action]) current_state = next_state action = next_action
state_space_size和action_space_size分別是環境中的狀態和動作的數量。 num_episodes是您想要執行SARSA演算法的輪次數。 Initial_state是環境的初始狀態。 take_action(current_state, action)是一個將目前狀態和作為操作輸入的函數,並傳回下一個狀態、獎勵和一個指示情節是否完成的布林值。
在while循環中,使用在單獨的函數epsilon_greedy_policy(epsilon, Q, current_state)中定義的epsilon-greedy策略來根據當前狀態選擇操作。使用機率 epsilon選擇一個隨機動作,使用機率 1-epsilon對目前狀態具有最高 Q 值的動作。
上面與Q-learning相同,但是採取了一個行動後,在觀察下一個狀態和獎勵時它然後使用貪心策略選擇下一個行動。並使用Bellman方程式更新q表。
3、DDPG
DDPG 是一種用於連續動作空間的無模型、非策略演算法。它是一種actor-critic演算法,其中actor網路用於選擇動作,而critic網路用於評估動作。 DDPG 對於機器人控制和其他連續控制任務特別有用。
import numpy as np from keras.models import Model, Sequential from keras.layers import Dense, Input from keras.optimizers import Adam # Define the actor and critic models actor = Sequential() actor.add(Dense(32, input_dim=state_space_size, activation='relu')) actor.add(Dense(32, activation='relu')) actor.add(Dense(action_space_size, activation='tanh')) actor.compile(loss='mse', optimizer=Adam(lr=0.001)) critic = Sequential() critic.add(Dense(32, input_dim=state_space_size, activation='relu')) critic.add(Dense(32, activation='relu')) critic.add(Dense(1, activation='linear')) critic.compile(loss='mse', optimizer=Adam(lr=0.001)) # Define the replay buffer replay_buffer = [] # Define the exploration noise exploration_noise = OrnsteinUhlenbeckProcess(size=action_space_size, theta=0.15, mu=0, sigma=0.2) for episode in range(num_episodes): current_state = initial_state while not done: # Select an action using the actor model and add exploration noise action = actor.predict(current_state)[0] + exploration_noise.sample() action = np.clip(action, -1, 1) # Take the action and observe the next state and reward next_state, reward, done = take_action(current_state, action) # Add the experience to the replay buffer replay_buffer.append((current_state, action, reward, next_state, done)) # Sample a batch of experiences from the replay buffer batch = sample(replay_buffer, batch_size) # Update the critic model states = np.array([x[0] for x in batch]) actions = np.array([x[1] for x in batch]) rewards = np.array([x[2] for x in batch]) next_states = np.array([x[3] for x in batch]) target_q_values = rewards + gamma * critic.predict(next_states) critic.train_on_batch(states, target_q_values) # Update the actor model action_gradients = np.array(critic.get_gradients(states, actions)) actor.train_on_batch(states, action_gradients) current_state = next_state
在本例中,state_space_size和action_space_size分別是環境中的狀態和動作的數量。 num_episodes是輪次數。 Initial_state是環境的初始狀態。 Take_action (current_state, action)是一個函數,它接受目前狀態和動作作為輸入,並傳回下一個動作。
4、A2C
A2C(Advantage Actor-Critic)是一種有策略的actor-critic演算法,它使用Advantage函數來更新策略。此演算法實現簡單,可以處理離散和連續的動作空間。
import numpy as np from keras.models import Model, Sequential from keras.layers import Dense, Input from keras.optimizers import Adam from keras.utils import to_categorical # Define the actor and critic models state_input = Input(shape=(state_space_size,)) actor = Dense(32, activation='relu')(state_input) actor = Dense(32, activation='relu')(actor) actor = Dense(action_space_size, activation='softmax')(actor) actor_model = Model(inputs=state_input, outputs=actor) actor_model.compile(loss='categorical_crossentropy', optimizer=Adam(lr=0.001)) state_input = Input(shape=(state_space_size,)) critic = Dense(32, activation='relu')(state_input) critic = Dense(32, activation='relu')(critic) critic = Dense(1, activation='linear')(critic) critic_model = Model(inputs=state_input, outputs=critic) critic_model.compile(loss='mse', optimizer=Adam(lr=0.001)) for episode in range(num_episodes): current_state = initial_state done = False while not done: # Select an action using the actor model and add exploration noise action_probs = actor_model.predict(np.array([current_state]))[0] action = np.random.choice(range(action_space_size), p=action_probs) # Take the action and observe the next state and reward next_state, reward, done = take_action(current_state, action) # Calculate the advantage target_value = critic_model.predict(np.array([next_state]))[0][0] advantage = reward + gamma * target_value - critic_model.predict(np.array([current_state]))[0][0] # Update the actor model action_one_hot = to_categorical(action, action_space_size) actor_model.train_on_batch(np.array([current_state]), advantage * action_one_hot) # Update the critic model critic_model.train_on_batch(np.array([current_state]), reward + gamma * target_value) current_state = next_state
在這個例子中,actor模型是一個神經網絡,它有2個隱藏層,每個隱藏層有32個神經元,具有relu激活函數,輸出層具有softmax激活函數。 critic模型也是一個神經網絡,它有2個隱含層,每層32個神經元,具有relu激活函數,輸出層具有線性激活函數。
使用分類交叉熵損失函數訓練actor模型,使用均方誤差損失函數訓練critic模型。動作是根據actor模型預測選擇的,並添加了用於探索的噪音。
5、PPO
PPO(Proximal Policy Optimization)是一種策略演算法,它使用信任域最佳化的方法來更新策略。它在具有高維觀察和連續動作空間的環境中特別有用。 PPO 以其穩定性和高樣品效率而聞名。
import numpy as np from keras.models import Model, Sequential from keras.layers import Dense, Input from keras.optimizers import Adam # Define the policy model state_input = Input(shape=(state_space_size,)) policy = Dense(32, activation='relu')(state_input) policy = Dense(32, activation='relu')(policy) policy = Dense(action_space_size, activation='softmax')(policy) policy_model = Model(inputs=state_input, outputs=policy) # Define the value model value_model = Model(inputs=state_input, outputs=Dense(1, activation='linear')(policy)) # Define the optimizer optimizer = Adam(lr=0.001) for episode in range(num_episodes): current_state = initial_state while not done: # Select an action using the policy model action_probs = policy_model.predict(np.array([current_state]))[0] action = np.random.choice(range(action_space_size), p=action_probs) # Take the action and observe the next state and reward next_state, reward, done = take_action(current_state, action) # Calculate the advantage target_value = value_model.predict(np.array([next_state]))[0][0] advantage = reward + gamma * target_value - value_model.predict(np.array([current_state]))[0][0] # Calculate the old and new policy probabilities old_policy_prob = action_probs[action] new_policy_prob = policy_model.predict(np.array([next_state]))[0][action] # Calculate the ratio and the surrogate loss ratio = new_policy_prob / old_policy_prob surrogate_loss = np.minimum(ratio * advantage, np.clip(ratio, 1 - epsilon, 1 + epsilon) * advantage) # Update the policy and value models policy_model.trainable_weights = value_model.trainable_weights policy_model.compile(optimizer=optimizer, loss=-surrogate_loss) policy_model.train_on_batch(np.array([current_state]), np.array([action_one_hot])) value_model.train_on_batch(np.array([current_state]), reward + gamma * target_value) current_state = next_state
6、DQN
DQN(深度 Q 網路)是一種無模型、非策略演算法,它使用神經網路來逼近 Q 函數。 DQN 特別適用於 Atari 遊戲和其他類似問題,其中狀態空間是高維的,並使用神經網路近似 Q 函數。
import numpy as np from keras.models import Sequential from keras.layers import Dense, Input from keras.optimizers import Adam from collections import deque # Define the Q-network model model = Sequential() model.add(Dense(32, input_dim=state_space_size, activation='relu')) model.add(Dense(32, activation='relu')) model.add(Dense(action_space_size, activation='linear')) model.compile(loss='mse', optimizer=Adam(lr=0.001)) # Define the replay buffer replay_buffer = deque(maxlen=replay_buffer_size) for episode in range(num_episodes): current_state = initial_state while not done: # Select an action using an epsilon-greedy policy if np.random.rand() < epsilon: action = np.random.randint(0, action_space_size) else: action = np.argmax(model.predict(np.array([current_state]))[0]) # Take the action and observe the next state and reward next_state, reward, done = take_action(current_state, action) # Add the experience to the replay buffer replay_buffer.append((current_state, action, reward, next_state, done)) # Sample a batch of experiences from the replay buffer batch = random.sample(replay_buffer, batch_size) # Prepare the inputs and targets for the Q-network inputs = np.array([x[0] for x in batch]) targets = model.predict(inputs) for i, (state, action, reward, next_state, done) in enumerate(batch): if done: targets[i, action] = reward else: targets[i, action] = reward + gamma * np.max(model.predict(np.array([next_state]))[0]) # Update the Q-network model.train_on_batch(inputs, targets) current_state = next_state
上面的代码,Q-network有2个隐藏层,每个隐藏层有32个神经元,使用relu激活函数。该网络使用均方误差损失函数和Adam优化器进行训练。
7、TRPO
TRPO (Trust Region Policy Optimization)是一种无模型的策略算法,它使用信任域优化方法来更新策略。 它在具有高维观察和连续动作空间的环境中特别有用。
TRPO 是一个复杂的算法,需要多个步骤和组件来实现。TRPO不是用几行代码就能实现的简单算法。
所以我们这里使用实现了TRPO的现有库,例如OpenAI Baselines,它提供了包括TRPO在内的各种预先实现的强化学习算法,。
要在OpenAI Baselines中使用TRPO,我们需要安装:
pip install baselines
然后可以使用baselines库中的trpo_mpi模块在你的环境中训练TRPO代理,这里有一个简单的例子:
import gym from baselines.common.vec_env.dummy_vec_env import DummyVecEnv from baselines.trpo_mpi import trpo_mpi #Initialize the environment env = gym.make("CartPole-v1") env = DummyVecEnv([lambda: env]) # Define the policy network policy_fn = mlp_policy #Train the TRPO model model = trpo_mpi.learn(env, policy_fn, max_iters=1000)
我们使用Gym库初始化环境。然后定义策略网络,并调用TRPO模块中的learn()函数来训练模型。
还有许多其他库也提供了TRPO的实现,例如TensorFlow、PyTorch和RLLib。下面时一个使用TF 2.0实现的样例
import tensorflow as tf import gym # Define the policy network class PolicyNetwork(tf.keras.Model): def __init__(self): super(PolicyNetwork, self).__init__() self.dense1 = tf.keras.layers.Dense(16, activation='relu') self.dense2 = tf.keras.layers.Dense(16, activation='relu') self.dense3 = tf.keras.layers.Dense(1, activation='sigmoid') def call(self, inputs): x = self.dense1(inputs) x = self.dense2(x) x = self.dense3(x) return x # Initialize the environment env = gym.make("CartPole-v1") # Initialize the policy network policy_network = PolicyNetwork() # Define the optimizer optimizer = tf.optimizers.Adam() # Define the loss function loss_fn = tf.losses.BinaryCrossentropy() # Set the maximum number of iterations max_iters = 1000 # Start the training loop for i in range(max_iters): # Sample an action from the policy network action = tf.squeeze(tf.random.categorical(policy_network(observation), 1)) # Take a step in the environment observation, reward, done, _ = env.step(action) with tf.GradientTape() as tape: # Compute the loss loss = loss_fn(reward, policy_network(observation)) # Compute the gradients grads = tape.gradient(loss, policy_network.trainable_variables) # Perform the update step optimizer.apply_gradients(zip(grads, policy_network.trainable_variables)) if done: # Reset the environment observation = env.reset()
在这个例子中,我们首先使用TensorFlow的Keras API定义一个策略网络。然后使用Gym库和策略网络初始化环境。然后定义用于训练策略网络的优化器和损失函数。
在训练循环中,从策略网络中采样一个动作,在环境中前进一步,然后使用TensorFlow的GradientTape计算损失和梯度。然后我们使用优化器执行更新步骤。
这是一个简单的例子,只展示了如何在TensorFlow 2.0中实现TRPO。TRPO是一个非常复杂的算法,这个例子没有涵盖所有的细节,但它是试验TRPO的一个很好的起点。
总结
以上就是我们总结的7个常用的强化学习算法,这些算法并不相互排斥,通常与其他技术(如值函数逼近、基于模型的方法和集成方法)结合使用,可以获得更好的结果。
以上是七個流行的強化學習演算法及程式碼實現的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

AI Hentai Generator
免費產生 AI 無盡。

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

熱門話題

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

透過將檢索增強生成和語意記憶納入AI編碼助手,提升開發人員的生產力、效率和準確性。譯自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。雖然基本AI程式設計助理自然有幫助,但由於依賴對軟體語言和編寫軟體最常見模式的整體理解,因此常常無法提供最相關和正確的程式碼建議。這些編碼助手產生的代碼適合解決他們負責解決的問題,但通常不符合各個團隊的編碼標準、慣例和風格。這通常會導致需要修改或完善其建議,以便將程式碼接受到應

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

編輯|KX在藥物研發領域,準確有效地預測蛋白質與配體的結合親和力對於藥物篩選和優化至關重要。然而,目前的研究並沒有考慮到分子表面訊息在蛋白質-配體相互作用中的重要作用。基於此,來自廈門大學的研究人員提出了一種新穎的多模態特徵提取(MFE)框架,該框架首次結合了蛋白質表面、3D結構和序列的信息,並使用交叉注意機制進行不同模態之間的特徵對齊。實驗結果表明,該方法在預測蛋白質-配體結合親和力方面取得了最先進的性能。此外,消融研究證明了該框架內蛋白質表面資訊和多模態特徵對齊的有效性和必要性。相關研究以「S

本站7月5日消息,格芯(GlobalFoundries)於今年7月1日發布新聞稿,宣布收購泰戈爾科技(TagoreTechnology)的功率氮化鎵(GaN)技術及智慧財產權組合,希望在汽車、物聯網和人工智慧資料中心應用領域探索更高的效率和更好的效能。隨著生成式人工智慧(GenerativeAI)等技術在數位世界的不斷發展,氮化鎵(GaN)已成為永續高效電源管理(尤其是在資料中心)的關鍵解決方案。本站引述官方公告內容,在本次收購過程中,泰戈爾科技公司工程師團隊將加入格芯,進一步開發氮化鎵技術。 G
