現在,企業組織比以往任何時候都更加信任和投資人工智慧(AI) 和機器學習 (ML) 的潛力。
根據2022 年 IBM 全球人工智慧採用指數,35% 的企業報告目前在其業務中使用人工智慧,另有 42% 的公司表示他們正在探索人工智慧。同時,麥肯錫的一項調查發現,56% 的受訪者表示,他們在 2021 年至少在一項職能中採用了人工智慧,高於 2020 年的 50%。
但是,對人工智慧的投資能帶來直接影響企業底線的真實ROI嗎?
根據Domino Data Lab 最近的REVElate 調查,該調查對5 月份紐約市Rev3 會議的與會者進行了調查,許多受訪者似乎都這麼認為。事實上,近一半的人預計數據科學會帶來兩位數的成長。近五分之四的受訪者 (79%) 表示,資料科學、機器學習和人工智慧對其公司未來的整體成長至關重要,36% 的受訪者稱其為最關鍵的因素。
當然,實施人工智慧並非易事。其他調查數據顯示了堅定信心的另一面。例如,人工智慧工程公司CognitiveScale最近的調查數據發現,儘管高階主管們知道,數據品質和部署是推動數位轉型的成功應用開發的關鍵成功因素,但超過76%的高階主管不確定如何在12-18個月的時間內達成目標。此外,32%的高階主管表示,人工智慧系統投入生產所花的時間比預期要長。
Cognitive Scale的執行長鮑勃·皮恰諾告訴媒體,人工智慧帶來的ROI是可能的,但必須根據業務目標對其進行準確描述和個性化。
他說:「如果業務目標是利用歷史資料進行更長期的預測,並提高預測精度,那麼人工智慧就可以發揮作用。」「但人工智慧必須負責任地推動業務效率— ML模型的準確率達98%是不夠的。」
相反,投資回報率可能是,例如,為了提高呼叫中心的效率,人工智慧驅動的功能可確保減少平均呼叫處理時間。
「這種投資報酬率是他們在最高管理層談論的內容,」他解釋道。 「他們不會談論模型是否準確、穩健或漂移。」
Cognitive Scale 的聯合創始人兼首席營運長Shay Sabhikhi 補充說,76%的受訪者表示難以擴大他們在人工智慧方面的投入,他對此並不感到驚訝。 「這正是我們從企業客戶那裡聽到的,」他說。他解釋說,其中一個問題是數據科學團隊和其他不知道如何處理他們開發的模型的組織之間的摩擦。
他說:「這些模型可能有最好的演算法和精確召回率,但卻被束之高閣,因為它們實際上被扔給了開發團隊,然後他們不得不匆忙地把應用程式組裝起來。 」
然而,在這一點上,組織必須對他們在人工智慧方面的投資負責,因為人工智慧不再是一系列科學實驗,Picciano 指出。 「我們稱之為從實驗室走向生活,」他說。 「我參加了一個首席數據分析官會議, 他們都在問,我該如何擴大規模?如何實現人工智能產業化?」
然而,並不是所有人都同意ROI是衡量AI是否在組織中驅動價值的最佳方法。安永(EY)全球技術長尼古拉•莫里尼•比安齊諾(Nicola Morini Bianzino)表示,用「用例」來衡量人工智慧和企業,然後透過ROI來衡量,這是對待人工智慧的錯誤方式。
「對我來說,人工智慧是一套技術,幾乎可以在企業的任何地方部署——不會將用例與相關的 ROI 分析隔離開來,」他說。
相反,他解釋說,組織機構只需要在任何地方使用人工智慧。 「這幾乎就像雲端運算一樣,兩三年前,我與客戶進行了很多對話,他們問,『ROI是什麼?我遷移到雲端運算的商業案例是什麼?現在,大流行之後,這種對話不再發生了。每個人都說,'我必須這麼做。』」
此外,Bianzino指出,討論AI和ROI取決於你所說的「使用AI」。
他說:「假設你試著應用一些自動駕駛能力-也就是說,電腦視覺是人工智慧的一個分支。」「這是一個商業案例嗎?不,因為沒有人工智慧就無法實現自動駕駛。」像安永(EY)這樣的公司也是如此,它吸收大量數據並向客戶提供建議——這離不開人工智慧。他說:「這是你無法從過程中分離出來的東西——它是內在的。」
此外,根據定義,人工智慧在第一天就沒有生產力或效率。取得資料、訓練模型、發展模型和擴大模型都需要時間。他說:「並不是有一天你可以說,我完成了人工智慧,100%的價值就在那裡——不,這是一種持續的能力,隨著時間的推移會變得更好。」「就能夠產生的價值而言,並沒有真正的終點。」
Bianzino說,在某種程度上,人工智慧正在成為商業成本的一部分。 「如果你從事的是一個涉及數據分析的行業,你不可能不具備人工智慧能力,」他解釋。 「你能把這些模型的商業案例分開嗎?這很難,我認為沒有必要。對我來說,這幾乎是運營企業的基礎設施成本。」
他補充說,大多數公司還處於起步階段。 「我認為大多數公司還沒有做到這一點,但在過去6到9個月裡,我肯定看到了一種轉變,人們開始認真對待業務結果和業務價值。」
但是,對於許多組織來說,如何衡量人工智慧的ROI仍然是一個難以捉摸的問題。 「對一些公司來說,有一些基本的問題,例如他們甚至無法將他們的模型投入生產,或者他們可以,但他們是盲目的,或者他們成功了,但現在他們想要擴大規模,」 Jain 說。 「但就投資報酬率而言,機器學習往往沒有相關的損益。」
他解釋說,AI計劃通常是卓越中心的一部分,ROI由業務部門掌握,而在其他情況下,它很難衡量。
「問題是,人工智慧是業務的一部分嗎?還是一種效用?如果你是數位原生代,人工智慧可能是業務運作燃料的一部分,」他說。 「但在一個擁有傳統業務或正在轉型的大型組織中,如何衡量投資回報率是他們必須解決的基本問題。」
以上是人工智慧與ROI的真相:人工智慧真的能實現嗎?的詳細內容。更多資訊請關注PHP中文網其他相關文章!