目錄
大规模连接组学
虛擬組織學
尋找細胞
定位蛋白質
追蹤動物行為
首頁 科技週邊 人工智慧 從手工作業到工業革命! Nature文章:生物影像分析被深度學習徹底改變的五個領域

從手工作業到工業革命! Nature文章:生物影像分析被深度學習徹底改變的五個領域

Apr 11, 2023 pm 07:58 PM
智慧 深度學習

一立方毫米,听起来不大,也就是一粒芝麻的大小,但在人类的大脑中,这点儿空间却能够容纳由1.34亿个突触相连接的大约5万条神经线(neural wires)。

为了生成原始数据,生物科学家需要使用连续超薄切片电镜的方法,在11个月内对数以千计的组织碎片进行成像。

而最终获得的数据量也达到了惊人的1.4 PetaBytes(即1400TB,相当于大约200万张CD-ROM的容量) ,对于研究人员来说这简直就是个天文数字。

哈佛大学的分子和细胞生物学家Jeff Lichtman表示,如果用纯手工作业,人类根本不可能手动追踪所有的神经线,地球上甚至都没有足够多的人能够真正有效地完成这项工作。

显微镜技术的进步带来了大量的成像数据,但数据量太大,人手不足,这也是连接组学(Connectomics,一门研究大脑结构和功能连接的学科),以及其他生物领域学科中的常见现象

计算机科学的使命正是为解决这类人力资源不足的问题,尤其是经过优化的深度学习算法,可以从大规模数据集中挖掘出数据模式

麻省理工学院布罗德研究所和哈佛大学剑桥分校的计算生物学家Beth Cimini表示,过去几年中,深度学习在生物学领域有着巨大的推动作用,并开发了很多研究工具。

下面是Nature编辑总结深度学习带来变革的五个生物学图像分析领域

大规模连接组学

深度学习使研究人员能够从果蝇、老鼠甚至人类身上生成越来越复杂的连接体。

这些数据可以帮助神经科学家理解大脑是如何工作的,以及大脑结构在发育和疾病过程中是如何变化的,但神经连接并不容易绘制

2018年,Lichtman谷歌在加州山景城的连接组学负责人Viren Jain联手,为团队所需的人工智能算法寻找解决方案。

连接组学中的图像分析任务实际上是非常困难的,你必须能够追踪这些细线、细胞的轴突和树突,还要跨越很长的距离,传统的图像处理方法在这项任务中会出现很多错误,基本上对这项任务没有用处

这些神经线可能比一微米还细,延伸数百微米甚至跨越毫米级的组织。

深度学习算法不仅能够自动化地分析连接组学数据,同时还能保持很高的精度

研究人员可以使用包含感兴趣特征的标注数据集来训练复杂的计算模型,以便能够快速识别其他数据中的相同特征。

欧洲分子生物学实验室的计算机科学家Anna Kreshuk认为,使用深度学习算法的过程类似于「举个例子」,只要例子够多,你就能把所有问题都解决掉。

但即使是使用深度学习,Lichtman和Jain团队还要完成一项艰巨的任务:绘制人类大脑皮层的片段。

收集数据阶段,仅仅拍摄5000多个超薄的组织切片就花了326天

两名研究人员花了大约100个小时来手动标注图像和追踪神经元,创建了一个ground truth数据集以训练算法。

使用標準資料訓練後的演算法就可以自動將影像拼接在一起,識別出神經元和突觸,並產生最終的連接體。

Jain的團隊為解決這個問題也投入了大量的運算資源,包括數千個張量處理單元(TPU) ,還耗費了幾個月時間來預處理100萬TPU小時所需的資料。

雖然研究人員已經取得到當下能收集到最大規模的資料集,能夠在非常精細的層級進行重建,但這個資料量大約只佔人類大腦的0.0001%

隨著演算法和硬體的改進,研究人員應該能夠繪製出更大的大腦區域,同時能夠分辨出更多的細胞特徵,如細胞器,甚至蛋白質。

至少,深度學習提供了可行性

虛擬組織學

組織學(histology)是醫學上的一個重要工具,用於在化學或分子染色的基礎上診斷疾病。

但是整個過程費時費力,通常需要幾天甚至幾週的時間才能完成。

先將活組織檢查切成薄片,染色顯示細胞和亞細胞特徵,然後病理學家透過閱讀結果並對之進行解釋。

加州大學洛杉磯分校的電腦工程師Aydogan Ozcan認為可以透過深度學習的方式加速整個過程。

他訓練了一個客製化的深度學習模型,透過電腦模擬給一個組織切片上染色,將同一切片上數以萬計的未染色和染色的樣本餵給模型,並讓模型計算它們之間的差異。

虛擬染色除了有時間優勢(瞬間就能完成)外,病理學家透過觀察發現,虛擬染色和傳統染色幾乎毫無區別,專業人士也無法分辨。

實驗結果表明,演算法可以在幾秒鐘內複製乳癌生物標記HER2的分子染色,而這個過程在組織學實驗室通常需要至少24小時

三位乳房病理學家組成的專家小組對這些影像進行了評價,認為它們的品質和準確性與傳統的免疫組織化學染色相當。

Ozcan看到了將虛擬染色商業化後在藥物研發中的應用前景,但他更希望藉此消除組織學對有毒染料和昂貴染色設備的需求。

尋找細胞

如果你想從細胞圖像中提取數據,那麼你必須知道細胞在圖像中的實際位置,這個過程也稱為細胞分割(cell segmentation)。

研究人員需要在顯微鏡下觀察細胞,或是在軟體中一張一張勾勒出細胞的輪廓

加州理工學院的計算生物學家Morgan Schwartz正在尋求自動化處理的方法,隨著成像資料集變得越來越大,傳統的手動方法也遇到了瓶頸,有些實驗如果不自動化就無法進行分析

Schwartz的研究生導師、生物工程師David Van Valen創建了一套人工智慧模型,並發佈在了deepcell.org網站上,可以用來計算和分析活細胞和保存組織影像中的細胞和其他特徵。

從手工作業到工業革命! Nature文章:生物影像分析被深度學習徹底改變的五個領域

Van Valen與史丹佛大學癌症生物學家Noah Greenwald等合作者一起也開發了一個深度學習模型Mesmer,可以快速、準確地檢測不同組織類型的細胞和細胞核

根據Greenwald說,研究人員可以利用這些資訊來區分癌症組織和非癌症組織,並尋找治療前後的差異,或者基於影像的變化來更好地了解為什麼一些患者會有反應或沒有反應,以及確定腫瘤的亞型。

定位蛋白質

人類蛋白質圖譜計畫利用了深度學習的另一個應用:細胞內定位。

史丹佛大學的生物工程師Emma Lundberg表示,在過去幾十年間,該計畫產生了數百萬張圖像,描繪了人體細胞和組織中的蛋白質表現。

剛開始的時候,專案參與者需要手動對這些圖像進行標註,但這種方法不可持續,Lundberg開始尋求人工智慧演算法的幫助。

過去幾年,她開始在Kaggle挑戰賽中發起眾包解決方案,科學家和人工智慧愛好者為了獎金會完成各種計算任務,兩個項目的獎金分別為3.7萬美元2.5萬美元

參賽者會設計有監督的機器學習模型,並對蛋白質圖譜影像進行標註。

Kaggle挑戰賽獲得的成果也讓專案成員大吃一驚,獲勝的模型表現比Lundberg先前在蛋白質定位模式的多標籤分類方面要高出約20% ,並且可以泛化到細胞系(cell line)中,也取得了新的產業突破,對存在於多個細胞位置的蛋白質進行準確的分類。

從手工作業到工業革命! Nature文章:生物影像分析被深度學習徹底改變的五個領域

有了模型,生物實驗就可以繼續前進,人類蛋白質的位置很重要,因為相同的蛋白質在不同的地方表現不同,知道一種蛋白質是在細胞核還是在粒線體中,這有助於理解它的功能。

追蹤動物行為

Mackenzie Mathis是瑞士洛桑聯邦理工學院校園生物技術中心的神經科學家,長期以來一直對大腦如何驅動行為感興趣。

為此,她開發了一個名為DeepLabCut的程序,使神經科學家能夠從影片中追蹤動物的姿勢和精細動作,並將「貓咪影片」和其他動物的記錄轉化為數據。

DeepLabcut提供了一個圖形使用者介面,研究人員只需點擊一個按鈕,就可以上傳並標註影片並訓練深度學習模型。

今年4月,Mathis的團隊擴展了該軟體,可以同時為多種動物估計姿勢,這對人類和人工智慧來說都是一個全新的挑戰。

將DeepLabCut訓練後的模型應用到狨猴身上,研究人員發現,當這些動物靠得很近時,它們的身體會排成一條直線,看向相似的方向,而當它們分開時,它們傾向於面對面。

生物學家透過辨識動物的姿勢,來了解兩種動物是如何互動、注視或觀察世界的。

以上是從手工作業到工業革命! Nature文章:生物影像分析被深度學習徹底改變的五個領域的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

Video Face Swap

Video Face Swap

使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

Python中使用BERT進行情感分析的方法及步驟 Python中使用BERT進行情感分析的方法及步驟 Jan 22, 2024 pm 04:24 PM

BERT是由Google在2018年提出的一種預先訓練的深度學習語言模式。全稱為BidirectionalEncoderRepresentationsfromTransformers,它基於Transformer架構,具有雙向編碼的特性。相較於傳統的單向編碼模型,BERT在處理文字時能夠同時考慮上下文的訊息,因此在自然語言處理任務中表現出色。它的雙向性使得BERT能夠更好地理解句子中的語義關係,從而提高了模型的表達能力。透過預訓練和微調的方法,BERT可以用於各種自然語言處理任務,如情緒分析、命名

潛藏空間嵌入:解釋與示範 潛藏空間嵌入:解釋與示範 Jan 22, 2024 pm 05:30 PM

潛在空間嵌入(LatentSpaceEmbedding)是將高維度資料對應到低維度空間的過程。在機器學習和深度學習領域中,潛在空間嵌入通常是透過神經網路模型將高維輸入資料映射為一組低維向量表示,這組向量通常被稱為「潛在向量」或「潛在編碼」。潛在空間嵌入的目的是捕捉資料中的重要特徵,並將其表示為更簡潔和可理解的形式。透過潛在空間嵌入,我們可以在低維空間中對資料進行視覺化、分類、聚類等操作,從而更好地理解和利用資料。潛在空間嵌入在許多領域中都有廣泛的應用,如影像生成、特徵提取、降維等。潛在空間嵌入的主要

超越ORB-SLAM3! SL-SLAM:低光、嚴重抖動和弱紋理場景全搞定 超越ORB-SLAM3! SL-SLAM:低光、嚴重抖動和弱紋理場景全搞定 May 30, 2024 am 09:35 AM

寫在前面今天我們探討下深度學習技術如何改善在複雜環境中基於視覺的SLAM(同時定位與地圖建構)表現。透過將深度特徵提取和深度匹配方法相結合,這裡介紹了一種多功能的混合視覺SLAM系統,旨在提高在諸如低光條件、動態光照、弱紋理區域和嚴重抖動等挑戰性場景中的適應性。我們的系統支援多種模式,包括拓展單目、立體、單目-慣性以及立體-慣性配置。除此之外,也分析如何將視覺SLAM與深度學習方法結合,以啟發其他研究。透過在公共資料集和自採樣資料上的廣泛實驗,展示了SL-SLAM在定位精度和追蹤魯棒性方面優

超強!深度學習Top10演算法! 超強!深度學習Top10演算法! Mar 15, 2024 pm 03:46 PM

自2006年深度學習概念被提出以來,20年快過去了,深度學習作為人工智慧領域的一場革命,已經催生了許多具有影響力的演算法。那麼,你所認為深度學習的top10演算法有哪些呢?以下是我心目中深度學習的頂尖演算法,它們在創新、應用價值和影響力方面都佔有重要地位。 1.深度神經網路(DNN)背景:深度神經網路(DNN)也叫多層感知機,是最普遍的深度學習演算法,發明之初由於算力瓶頸而飽受質疑,直到近些年算力、數據的爆發才迎來突破。 DNN是一種神經網路模型,它包含多個隱藏層。在該模型中,每一層將輸入傳遞給下一層,並

一文搞懂:AI、機器學習與深度學習的連結與區別 一文搞懂:AI、機器學習與深度學習的連結與區別 Mar 02, 2024 am 11:19 AM

在當今科技日新月異的浪潮中,人工智慧(ArtificialIntelligence,AI)、機器學習(MachineLearning,ML)與深度學習(DeepLearning,DL)如同璀璨星辰,引領著資訊科技的新浪潮。這三個詞彙經常出現在各種前沿討論和實際應用中,但對於許多初涉此領域的探索者來說,它們的具體含義及相互之間的內在聯繫可能仍籠罩著一層神秘面紗。那讓我們先來看看這張圖。可以看出,深度學習、機器學習和人工智慧之間存在著緊密的關聯和遞進關係。深度學習是機器學習的一個特定領域,而機器學習

AlphaFold 3 重磅問世,全面預測蛋白質與所有生命分子相互作用及結構,準確度遠超以往水平 AlphaFold 3 重磅問世,全面預測蛋白質與所有生命分子相互作用及結構,準確度遠超以往水平 Jul 16, 2024 am 12:08 AM

编辑|萝卜皮自2021年发布强大的AlphaFold2以来,科学家们一直在使用蛋白质结构预测模型来绘制细胞内各种蛋白质结构的图谱、发现药物,并绘制每种已知蛋白质相互作用的「宇宙图」。就在刚刚,GoogleDeepMind发布了AlphaFold3模型,该模型能够对包括蛋白质、核酸、小分子、离子和修饰残基在内的复合物进行联合结构预测。AlphaFold3的准确性对比过去许多专用工具(蛋白质-配体相互作用、蛋白质-核酸相互作用、抗体-抗原预测)有显著提高。这表明,在单个统一的深度学习框架内,可以实现

TensorFlow深度學習架構模型推理Pipeline進行人像摳圖推理 TensorFlow深度學習架構模型推理Pipeline進行人像摳圖推理 Mar 26, 2024 pm 01:00 PM

概述為了讓ModelScope的使用者能夠快速、方便的使用平台提供的各類模型,提供了一套功能完備的Pythonlibrary,其中包含了ModelScope官方模型的實現,以及使用這些模型進行推理,finetune等任務所需的資料預處理,後處理,效果評估等功能相關的程式碼,同時也提供了簡單易用的API,以及豐富的使用範例。透過呼叫library,使用者可以只寫短短的幾行程式碼,就可以完成模型的推理、訓練和評估等任務,也可以在此基礎上快速進行二次開發,實現自己的創新想法。目前library提供的演算法模型,

淺層特徵與深層特徵的結合在實際應用中的範例 淺層特徵與深層特徵的結合在實際應用中的範例 Jan 22, 2024 pm 05:00 PM

深度學習在電腦視覺領域取得了巨大成功,其中一項重要進展是使用深度卷積神經網路(CNN)進行影像分類。然而,深度CNN通常需要大量標記資料和運算資源。為了減少運算資源和標記資料的需求,研究人員開始研究如何融合淺層特徵和深層特徵以提高影像分類效能。這種融合方法可以利用淺層特徵的高運算效率和深層特徵的強表示能力。透過將兩者結合,可以在保持較高分類準確性的同時降低計算成本和資料標記的要求。這種方法對於那些資料量較小或計算資源有限的應用情境尤其重要。透過深入研究淺層特徵和深層特徵的融合方法,我們可以進一

See all articles