人工智慧應用面臨七大資料安全威脅
自動駕駛技術、智慧助理、人臉辨識、智慧工廠、智慧城市等人工智慧技術現已廣泛落地,這些令人難以置信的技術正在快速改變我們的生活。但相關領域安全事件也在快速增加,這使得研究人員和使用者對人工智慧的安全性擔憂不斷提高。人工智慧應用帶來的紅利和其引發的安全隱患,猶如一個硬幣的兩面,需要全行業高度關注並找到有效的應對方法。
日前,安全研究人員整理總結了目前人工智慧技術在實務應用中經常要面對的7個資料安全威脅。
威脅1模型中毒
模型中毒(Model poisoning)是一種對抗性攻擊形式,旨在操縱機器學習模型的結果。威脅行為者可以嘗試向模型中註入惡意數據,進而導致模型對數據進行錯誤分類並做出錯誤的決策。例如,工程圖像可以欺騙機器學習模型,將它們分類到與人類最初分類不同的類別中(例如,將貓的圖像標記為老鼠)。研究發現,這是一種欺騙AI系統的有效方法,因為在輸出之前,不可能判斷特定的輸入是否會導致錯誤的預測。
為了防止惡意行為者篡改模型輸入,企業組織應該實施嚴格的存取管理策略來限制對訓練資料的存取。
威脅2隱私外洩
隱私權保護是一個敏感的問題,需要額外的關注和重視,尤其是AI模型中包含有未成年人的資料時,問題就更複雜了。例如,針對青少年的一些金融卡選項,銀行必須確保其安全標準符合監管合規要求。所有以任何形式或途徑收集客戶資訊的公司都需要製定資料保護政策。這樣,客戶就可以知道組織如何處理他們的資料。然而,用戶如何知道他們的數據是否流入了人工智慧演算法的應用中?很少(或可以說幾乎沒有)隱私策略包含這些資訊。
我們正在步入人工智慧驅動的時代,對於個人來說,了解企業如何使用人工智慧、人工智慧的功能及其對資料的影響將變得非常重要。同樣地,攻擊者可能會試圖使用惡意軟體竊取包含信用卡號碼或社會安全號碼等個人資訊的敏感資料集。企業組織必須定期進行安全審計,並在人工智慧開發的所有階段實施強有力的資料保護實踐。隱私風險可能發生在資料生命週期的任何階段,因此為所有利害關係人制定統一的隱私安全策略非常重要。
威脅3資料竄改
資料操縱、暴露與竄改所帶來的風險,在AI規模化應用背景下正在不斷放大,因為這些系統需要基於大量資料進行分析決策,而這些數據很容易被惡意行為者操縱或篡改。此外,演算法偏見是人工智慧規模化應用中所面臨的另一個主要問題。人工智慧演算法和機器學習程式應該是客觀和公正的,但事實並非如此。
人工智慧演算法的資料篡改威脅是一個巨大的問題,這沒有簡單的解決方案,但它需要被重視。如何確保輸入演算法的資料是準確、可靠且不被竄改的?如何確保數據不會以令人討厭的方式使用?所有這些問題都是非常現實的問題,但目前業界還沒有找到明確的答案。
威脅4內部威脅
就資料安全而言,來自內部威脅無疑是最危險的一種,也是代價最高昂的一種類型。根據最新的《內部威脅成本:全球報告》顯示,在過去兩年中,內部威脅事件的數量上升了44%,每起事件的平均損失成本為1,538萬美元。
內在威脅之所以如此危險,是因為他們的動機不一定是金錢,也可能是出於報復、好奇心或人為錯誤等其他因素。正因如此,它們比外部的攻擊者更難預測和阻止。
對於那些涉及公民健康的公司來說,內部威脅無疑是更有害的。以醫療保健服務商HelloRache為例,該公司使用了AI模式的虛擬記錄員(virtual scribes,協助醫生處理電腦相關任務的助理)工具,因此他們可以遠端協助醫生照顧病人,做病情記錄工作。但如果內部人員找到了方法,可能會導致系統被錯誤連接,甚至可以監控獲取患者的醫療資訊。
威脅5針對性蓄意攻擊
一項研究數據顯示,86%的企業組織開始將人工智慧作為未來數位化發展的「主流」技術,並加大投資各種數據驅動的AI技術,以幫助企業做出更好的決策、改善客戶服務並降低成本。但有一個問題:對人工智慧系統的蓄意攻擊正在增加,如果沒有適當的控制措施,它們可能會為組織帶來超百萬美元的損失。
「蓄意攻擊」是指有目的地透過入侵人工智慧系統來破壞一個組織的業務運作,目的是取得領先對手的競爭優勢。在蓄意攻擊場景中,對AI和ML的資料安全威脅可能尤其具有破壞性。因為這些系統中使用的數據通常是專有的,具有很高的價值。當人工智慧系統遭到針對性的蓄意攻擊時,其後果不僅是資料被竊取,而是公司的競爭能力被破壞。
威脅6大規模採用
人工智慧是正在快速成長的產業,這意味著它們仍然很脆弱。隨著AI應用越來越受歡迎,並在世界各地被採用,駭客將會找到新的方法來幹擾這些程式的輸入和輸出。 AI通常是一套複雜的系統,以至於開發人員很難知道他們的程式碼在各種應用情況下會如何表現。當無法預測會發生什麼事時,就很難阻止它的發生。
保護企業免受大規模應用威脅的最佳方法是結合良好的程式設計實務、測試流程,並在發現新漏洞時及時更新。當然,不要放棄傳統形式的網路安全預防措施,例如使用託管資料中心來保護伺服器免受惡意攻擊和外部威脅。
威脅7AI驅動的攻擊
研究人員發現,惡意攻擊者正在將人工智慧武器化,幫助他們設計和實施攻擊。在這種情況下,「設計攻擊」指的是選擇一個目標,確定他們試圖竊取或破壞什麼數據,然後決定一種傳輸方法。非法攻擊者可以使用機器學習演算法尋找繞過安全控制的方法來進行攻擊,或使用深度學習演算法,根據真實世界的樣本創建新的惡意軟體。安全專家必須不斷防禦愈發智慧的機器人,因為一旦他們阻止了一種攻擊,另一種新的攻擊就會出現。簡而言之,人工智慧使攻擊者在當前安全保障措施中尋找漏洞變得更容易。
參考連結:
#https://www.php.cn/link/d27b95cac4c27feb850aaa4070cc4675
#以上是人工智慧應用面臨七大資料安全威脅的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

透過將檢索增強生成和語意記憶納入AI編碼助手,提升開發人員的生產力、效率和準確性。譯自EnhancingAICodingAssistantswithContextUsingRAGandSEM-RAG,作者JanakiramMSV。雖然基本AI程式設計助理自然有幫助,但由於依賴對軟體語言和編寫軟體最常見模式的整體理解,因此常常無法提供最相關和正確的程式碼建議。這些編碼助手產生的代碼適合解決他們負責解決的問題,但通常不符合各個團隊的編碼標準、慣例和風格。這通常會導致需要修改或完善其建議,以便將程式碼接受到應

想了解更多AIGC的內容,請造訪:51CTOAI.x社群https://www.51cto.com/aigc/譯者|晶顏審校|重樓不同於網路上隨處可見的傳統問題庫,這些問題需要跳脫常規思維。大語言模型(LLM)在數據科學、生成式人工智慧(GenAI)和人工智慧領域越來越重要。這些複雜的演算法提升了人類的技能,並在許多產業中推動了效率和創新性的提升,成為企業保持競爭力的關鍵。 LLM的應用範圍非常廣泛,它可以用於自然語言處理、文字生成、語音辨識和推薦系統等領域。透過學習大量的數據,LLM能夠產生文本

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

機器學習是人工智慧的重要分支,它賦予電腦從數據中學習的能力,並能夠在無需明確編程的情況下改進自身能力。機器學習在各個領域都有廣泛的應用,從影像辨識和自然語言處理到推薦系統和詐欺偵測,它正在改變我們的生活方式。機器學習領域存在著多種不同的方法和理論,其中最具影響力的五種方法被稱為「機器學習五大派」。這五大派分別為符號派、聯結派、進化派、貝葉斯派和類推學派。 1.符號學派符號學(Symbolism),又稱符號主義,強調利用符號進行邏輯推理和表達知識。該學派認為學習是一種逆向演繹的過程,透過現有的

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

上週,在內部的離職潮和外部的口誅筆伐之下,OpenAI可謂是內憂外患:-侵權寡姐引發全球熱議-員工簽署“霸王條款”被接連曝出-網友細數奧特曼“七宗罪」闢謠:根據Vox獲取的洩漏資訊和文件,OpenAI的高級領導層,包括Altman在內,非常了解這些股權回收條款,並且簽署了它們。除此之外,還有一個嚴峻而迫切的問題擺在OpenAI面前——AI安全。最近,五名與安全相關的員工離職,其中包括兩名最著名的員工,「超級對齊」團隊的解散讓OpenAI的安全問題再次被置於聚光燈下。 《財星》雜誌報道稱,OpenA

本站8月1日消息,SK海力士今天(8月1日)發布博文,宣布將出席8月6日至8日,在美國加州聖克拉拉舉行的全球半導體記憶體峰會FMS2024,展示諸多新一代產品。未來記憶體和儲存高峰會(FutureMemoryandStorage)簡介前身是主要面向NAND供應商的快閃記憶體高峰會(FlashMemorySummit),在人工智慧技術日益受到關注的背景下,今年重新命名為未來記憶體和儲存高峰會(FutureMemoryandStorage),以邀請DRAM和儲存供應商等更多參與者。新產品SK海力士去年在
