首頁 科技週邊 人工智慧 機器學習基礎之數字上的距離:點在空間中的距離

機器學習基礎之數字上的距離:點在空間中的距離

Apr 11, 2023 pm 11:40 PM
機器學習 空間 距離

 本文轉載自微信公眾號「活在資訊時代」,作者活在資訊時代。轉載本文請聯絡活在資訊時代公眾號。

在機器學習中,一個基礎的概念就是如何判斷兩個樣本之間的差異,以便能夠評估兩個樣本之間的相似性和類別等資訊。而判斷這種相似性的測量就是兩個樣本在特徵空間內的距離。

根據資料特徵的不同,度量方法有很多種。一般而言,對兩個資料樣本x,y,定義一個函數d(x,y),如果定義其為兩個樣本之間的距離,那麼d(x,y)則需要滿足以下幾個基本性質:

  • 非負性:d(x,y)>=0
  • 同一性:d(x,y)=0 ⇔ x=y
  • 對稱性:d(x,y)= d(y,x)
  • 三角不等式:d(x,y)

通常來講,常見的距離測量包括:點在空間中的距離、字串間的距離、集合的相似度、變數/概念分佈間的距離四種。

今天我們先來介紹最常用的點在空間中的距離。

點在空間中的距離包括以下幾種:

1、歐幾裡得距離(Ecllidean Distance)

毫無疑問,歐氏距離是人們最熟悉的距離,它也就是兩點之間的直線距離。學過國中數學的同學都知道在笛卡爾座標系中如何計算二維空間兩點之間的距離

機器學習基礎之數字上的距離:點在空間中的距離

其計算公式為:

機器學習基礎之數字上的距離:點在空間中的距離

推廣到N維空間的歐氏距離即為:

機器學習基礎之數字上的距離:點在空間中的距離

2、曼哈頓距離(Manhattan Distance)

曼哈頓距離又稱為計程車距離,其概念來自紐約曼哈頓區這樣有很多橫平豎直的街區,在這種街區中,計程車司機如果想從一個點走到另一個點的話,計算直線距離是沒有用的,因為計程車不可能從建築物上飛過去。因此,這種距離通常是將兩點的東西向、南北向距離分別相減再相加,也就是計程車實際要經過的距離。

機器學習基礎之數字上的距離:點在空間中的距離

如圖所示,紅線和黃線就是兩條不同路徑的曼哈頓距離。數學上,二維空間的曼哈頓距離計算方法如下:

機器學習基礎之數字上的距離:點在空間中的距離

#3、切比雪夫距離(Chebyshev Distance)

切比雪夫距離定義為兩點之間各座標數值差的最大值。


其最直觀的例子就是西洋棋中的國王,因為它可以橫走直走斜走,但是每次都只能走一格,所以切比雪夫距離就是他要走到另一個格子所需要的最小距離。

機器學習基礎之數字上的距離:點在空間中的距離

4、閔可夫斯基距離(Minkowski Distance)

閔氏距離本身不是一個特別的距離,而是將多個距離(曼哈頓距離、歐氏距離、切比雪夫距離)合併為的公式。

其定義為,對於兩個n維變量,閔氏距離為:

機器學習基礎之數字上的距離:點在空間中的距離

當p=1時,可以看到

機器學習基礎之數字上的距離:點在空間中的距離

此時為曼哈頓距離。

當p=2時,可以看到

機器學習基礎之數字上的距離:點在空間中的距離

#此時即為歐氏距離。

當p=∞時,可以看到

機器學習基礎之數字上的距離:點在空間中的距離

#此時即為切比雪夫距離。

5、標準化的歐幾里德距離(Standardized Euclidean Distance)

歐氏距離可以測量兩個點之間的直線距離,但在某些情況下,可能會受到單位不同的影響。例如同時是差5,差5毫米的身高和差5公斤的體重,觀感可能是完全不同的。如果我們想對三個模特兒進行聚類,她們各自的屬性如下:

A:65000000毫克(即65公斤),1.74公尺

B:60000000毫克(即60公斤) ,1.70米

C:65000000毫克(即65公斤),1.40米

按我們正常的理解,A和B是身材比較好的模特,應該歸到一類。但是以上述單位實際計算的時候,卻發現A和B的差異大於A和C之間的差異。原因在於屬性計量單位的不同導致數值差異過大。同樣的數據如果換個單位。

A:65公斤,174公分

B:60公斤,170公分

C:65公斤,140公分

#那麼就會得到我們想到的結果,將A和B歸為一類了。因此,為避免這種因計量單位的不同而出現的差異,我們需要引入標準化歐氏距離。在這種距離計算中,會將各個分量都標準化到平均值、變異數相等的區間。

假設樣本集X的平均值(mean)為m,標準差(standard deviation)為s,則X的「標準化變數」表示為:

機器學習基礎之數字上的距離:點在空間中的距離

其中,標準化後的值= ( 標準化前的值- 分量的平均值) /分量的標準差。經過簡單的推導就可以得到兩個n維向量間的標準化歐氏距離公式為:

機器學習基礎之數字上的距離:點在空間中的距離

#如果將變異數的倒數看成是一個權重,這個公式可以看成是一種加權歐氏距離(Weighted Euclidean distance)。透過這種操作,我們就有效的消除了不同計重單位之間的差異。

6、蘭氏距離(Lance and Willianms Distance)

蘭氏距離又稱為堪培拉距離,

機器學習基礎之數字上的距離:點在空間中的距離

它是一個無量綱的指標,克服了閔氏距離與各指標的量綱有關的缺點,並且對於較大的奇異值不敏感,特別適合調度偏差的數據。但是這種距離也沒有考慮到變數間的相關性。所以如果需要考慮變數之間的相關性的話,還是需要馬氏距離。

7、馬氏距離(Mahalanobis Distance)

將數值標準化之後,就一定不會出問題嗎?也不一定。例如在一個一維的例子中,如果有兩個類,一個類均值為0,方差為0.1,而另一個類均值為5,方差為5。那麼如果一個值為2的點應該屬於哪一類呢?我們直覺認為它肯定是第二類,因為第一類顯然不太可能在數值上達到2。但是實際上從距離上計算的話2這個數字就得屬於第一類。

所以,在一個變異數較小的維度下,很小的差異就可能成為離群點。例如說下圖,A與B相對於原點的距離是相同的,但是由於樣本整體沿著橫軸分佈,所以B點更有可能是樣本中的點,而A點則更有可能是離群點。

機器學習基礎之數字上的距離:點在空間中的距離

而在維度間不獨立同分佈的情況下,也會出現問題,例如說下圖中的A點與B點到原點的距離相等,但是主要分佈類似f(x)=x,所以A比較像是離群點。

機器學習基礎之數字上的距離:點在空間中的距離

因此,我們可以看到,在這種情況下,標準化的歐氏距離也會有問題,所以我們需要引入馬氏距離。

馬氏距離將變數依照主成分旋轉,讓維度間相互獨立,然後再標準化,讓維度同分佈。而主成分即為特徵向量方向,所以只需要按照特徵向量的方向旋轉,然後縮放特徵值倍就可以了。例如上圖轉換之後會得到下面的結果:

機器學習基礎之數字上的距離:點在空間中的距離

可以看出離群點被成功分開了。

馬氏距離是由印度數學家馬哈拉諾比斯提出的,表示數據的協方差距離。它是一種有效計算兩個未知樣本集的相似度的方法。

對於一個平均值為

機器學習基礎之數字上的距離:點在空間中的距離

,協方差矩陣為Σ的多變數向量

機器學習基礎之數字上的距離:點在空間中的距離

#,其馬氏距離(單一資料點的馬氏距離)為:

機器學習基礎之數字上的距離:點在空間中的距離

對於兩個服從同一分佈且其協方差矩陣為Σ的隨機變數X與Y的差異程度,資料點x, y之間的馬氏距離為:

機器學習基礎之數字上的距離:點在空間中的距離

如果協方差矩陣為單位矩陣,那麼馬氏距離就簡化成了歐氏距離。如果協方差矩陣為對角陣,那麼馬氏距離就變成了標準化的歐氏距離。

8、餘弦距離(Cosine Distance)

顧名思義,餘弦距離來自幾何中的夾角餘弦,它可用於衡量兩個向量方向的差異,而非距離或長度上。當餘弦值為0時,兩向量正交,夾角為90度。夾角越小,餘弦值越接近1,方向更趨同。

在N維空間中,餘弦距離為:


#值得指出的是,餘弦距離不滿足三角不等式。

9、測地距離(Geodesic Distance)

#測地距離最初是指球體表面之間的最短距離。當特徵空間為平面時,測地距離即為歐氏距離。在非歐幾何中,球面上兩點間距離最短的線是連接這兩點的大圓弧,在球面上的三角形、多邊形的邊也是由這些大圓弧組成的。

機器學習基礎之數字上的距離:點在空間中的距離

10、布雷柯蒂斯距離(Bray Curtis Distance)

布雷柯蒂斯距離主要用於植物學、生態學和環境科學,它可以用來計算樣本之間的差異。其公式為:

機器學習基礎之數字上的距離:點在空間中的距離

其取值在[0, 1]之間,如果兩個向量座標都為0的話,那麼值就無意義。

以上是機器學習基礎之數字上的距離:點在空間中的距離的詳細內容。更多資訊請關注PHP中文網其他相關文章!

本網站聲明
本文內容由網友自願投稿,版權歸原作者所有。本站不承擔相應的法律責任。如發現涉嫌抄襲或侵權的內容,請聯絡admin@php.cn

熱AI工具

Undresser.AI Undress

Undresser.AI Undress

人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover

AI Clothes Remover

用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool

Undress AI Tool

免費脫衣圖片

Clothoff.io

Clothoff.io

AI脫衣器

AI Hentai Generator

AI Hentai Generator

免費產生 AI 無盡。

熱門文章

R.E.P.O.能量晶體解釋及其做什麼(黃色晶體)
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.最佳圖形設置
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
R.E.P.O.如果您聽不到任何人,如何修復音頻
4 週前 By 尊渡假赌尊渡假赌尊渡假赌
WWE 2K25:如何解鎖Myrise中的所有內容
1 個月前 By 尊渡假赌尊渡假赌尊渡假赌

熱工具

記事本++7.3.1

記事本++7.3.1

好用且免費的程式碼編輯器

SublimeText3漢化版

SublimeText3漢化版

中文版,非常好用

禪工作室 13.0.1

禪工作室 13.0.1

強大的PHP整合開發環境

Dreamweaver CS6

Dreamweaver CS6

視覺化網頁開發工具

SublimeText3 Mac版

SublimeText3 Mac版

神級程式碼編輯軟體(SublimeText3)

15個值得推薦的開源免費圖片標註工具 15個值得推薦的開源免費圖片標註工具 Mar 28, 2024 pm 01:21 PM

圖像標註是將標籤或描述性資訊與圖像相關聯的過程,以賦予圖像內容更深層的含義和解釋。這個過程對於機器學習至關重要,它有助於訓練視覺模型以更準確地識別圖像中的各個元素。透過為圖像添加標註,使得電腦能夠理解圖像背後的語義和上下文,從而提高對圖像內容的理解和分析能力。影像標註的應用範圍廣泛,涵蓋了許多領域,如電腦視覺、自然語言處理和圖視覺模型具有廣泛的應用領域,例如,輔助車輛識別道路上的障礙物,幫助疾病的檢測和診斷透過醫學影像識別。本文主要推薦一些較好的開源免費的圖片標註工具。 1.Makesens

一文帶您了解SHAP:機器學習的模型解釋 一文帶您了解SHAP:機器學習的模型解釋 Jun 01, 2024 am 10:58 AM

在機器學習和資料科學領域,模型的可解釋性一直是研究者和實踐者關注的焦點。隨著深度學習和整合方法等複雜模型的廣泛應用,理解模型的決策過程變得尤為重要。可解釋人工智慧(ExplainableAI|XAI)透過提高模型的透明度,幫助建立對機器學習模型的信任和信心。提高模型的透明度可以透過多種複雜模型的廣泛應用等方法來實現,以及用於解釋模型的決策過程。這些方法包括特徵重要性分析、模型預測區間估計、局部可解釋性演算法等。特徵重要性分析可以透過評估模型對輸入特徵的影響程度來解釋模型的決策過程。模型預測區間估計

通透!機器學習各大模型原理的深度剖析! 通透!機器學習各大模型原理的深度剖析! Apr 12, 2024 pm 05:55 PM

通俗來說,機器學習模型是一種數學函數,它能夠將輸入資料映射到預測輸出。更具體地說,機器學習模型是一種透過學習訓練數據,來調整模型參數,以最小化預測輸出與真實標籤之間的誤差的數學函數。在機器學習中存在多種模型,例如邏輯迴歸模型、決策樹模型、支援向量機模型等,每種模型都有其適用的資料類型和問題類型。同時,不同模型之間存在著許多共通性,或者說有一條隱藏的模型演化的路徑。將聯結主義的感知機為例,透過增加感知機的隱藏層數量,我們可以將其轉化為深度神經網路。而對感知機加入核函數的話就可以轉換為SVM。這一

透過學習曲線辨識過擬合和欠擬合 透過學習曲線辨識過擬合和欠擬合 Apr 29, 2024 pm 06:50 PM

本文將介紹如何透過學習曲線來有效辨識機器學習模型中的過度擬合和欠擬合。欠擬合和過擬合1、過擬合如果一個模型對資料進行了過度訓練,以至於它從中學習了噪聲,那麼這個模型就被稱為過擬合。過度擬合模型非常完美地學習了每一個例子,所以它會錯誤地分類一個看不見的/新的例子。對於一個過度擬合的模型,我們會得到一個完美/接近完美的訓練集分數和一個糟糕的驗證集/測試分數。略有修改:"過擬合的原因:用一個複雜的模型來解決一個簡單的問題,從資料中提取雜訊。因為小資料集作為訓練集可能無法代表所有資料的正確表示。"2、欠擬合如

人工智慧在太空探索和人居工程中的演變 人工智慧在太空探索和人居工程中的演變 Apr 29, 2024 pm 03:25 PM

1950年代,人工智慧(AI)誕生。當時研究人員發現機器可以執行類似人類的任務,例如思考。後來,在1960年代,美國國防部資助了人工智慧,並建立了實驗室進行進一步開發。研究人員發現人工智慧在許多領域都有用武之地,例如太空探索和極端環境中的生存。太空探索是對宇宙的研究,宇宙涵蓋了地球以外的整個宇宙空間。太空被歸類為極端環境,因為它的條件與地球不同。要在太空中生存,必須考慮許多因素,並採取預防措施。科學家和研究人員認為,探索太空並了解一切事物的現狀有助於理解宇宙的運作方式,並為潛在的環境危機

使用C++實現機器學習演算法:常見挑戰及解決方案 使用C++實現機器學習演算法:常見挑戰及解決方案 Jun 03, 2024 pm 01:25 PM

C++中機器學習演算法面臨的常見挑戰包括記憶體管理、多執行緒、效能最佳化和可維護性。解決方案包括使用智慧指標、現代線程庫、SIMD指令和第三方庫,並遵循程式碼風格指南和使用自動化工具。實作案例展示如何利用Eigen函式庫實現線性迴歸演算法,有效地管理記憶體和使用高效能矩陣操作。

可解釋性人工智慧:解釋複雜的AI/ML模型 可解釋性人工智慧:解釋複雜的AI/ML模型 Jun 03, 2024 pm 10:08 PM

譯者|李睿審校|重樓人工智慧(AI)和機器學習(ML)模型如今變得越來越複雜,這些模型產生的產出是黑盒子-無法向利害關係人解釋。可解釋性人工智慧(XAI)致力於透過讓利害關係人理解這些模型的工作方式來解決這個問題,確保他們理解這些模型實際上是如何做出決策的,並確保人工智慧系統中的透明度、信任度和問責制來解決這個問題。本文探討了各種可解釋性人工智慧(XAI)技術,以闡明它們的基本原理。可解釋性人工智慧至關重要的幾個原因信任度和透明度:為了讓人工智慧系統被廣泛接受和信任,使用者需要了解決策是如何做出的

Flash Attention穩定嗎? Meta、哈佛發現其模型權重偏差呈現數量級波動 Flash Attention穩定嗎? Meta、哈佛發現其模型權重偏差呈現數量級波動 May 30, 2024 pm 01:24 PM

MetaFAIR聯合哈佛優化大規模機器學習時所產生的資料偏差,提供了新的研究架構。據所周知,大語言模型的訓練常常需要數月的時間,使用數百甚至上千個GPU。以LLaMA270B模型為例,其訓練總共需要1,720,320個GPU小時。由於這些工作負載的規模和複雜性,導致訓練大模型存在著獨特的系統性挑戰。最近,許多機構在訓練SOTA生成式AI模型時報告了訓練過程中的不穩定情況,它們通常以損失尖峰的形式出現,例如Google的PaLM模型訓練過程中出現了多達20次的損失尖峰。數值偏差是造成這種訓練不準確性的根因,

See all articles