稀疏模型最新進展!馬毅+LeCun強強聯手:「白盒」非監督式學習
最近马毅教授和图灵奖得主Yann LeCun联手在ICLR 2023上发表了一篇论文,描述了一种极简和可解释的非监督式学习方法,不需要求助于数据增强、超参数调整或其他工程设计,就可以实现接近 SOTA SSL 方法的性能。
论文链接:https://arxiv.org/abs/2209.15261
该方法利用了稀疏流形变换,将稀疏编码、流形学习和慢特征分析(slow feature analysis)相结合。
采用单层确定性稀疏流形变换,在 MNIST 上可以达到99.3% 的 KNN top-1精度,在 CIFAR-10上可以达到81.1% 的 KNN top-1精度,在 CIFAR-100上可以达到53.2% 的 KNN top-1精度。
通过简单的灰度增强,模型在 CIFAR-10和 CIFAR-100上的精度分别达到83.2% 和57% ,这些结果显著地缩小了简单的「白盒」方法和 SOTA 方法之间的差距。
此外,文中还提供了可视化解释如何形成一个无监督的表征变换。该方法与潜在嵌入自监督方法密切相关,可以看作是最简单的 VICReg 方法。
尽管在我们简单的建设性模型和 SOTA 方法之间仍然存在很小的性能差距,但有证据表明,这是一个有希望的方向,可以实现一个原则性的、白盒式的非监督式学习。
文章第一作者Yubei Chen是纽约大学数据科学中心(CDS)和Meta基础人工智能研究(FAIR)的博士后助理,导师为Yann LeCun教授,博士毕业于加州大学伯克利分校的Redwood Center理论神经科学和伯克利人工智能研究所(BAIR),本科毕业于清华大学。
主要研究方向研究为计算神经科学学习和深度无监督(自监督)学习的交叉,研究结果增强了对大脑和机器无监督表征学习的计算原理的理解,并重塑对自然信号统计的认识。
马毅教授于1995年获得清华大学自动化与应用数学双学士学位,并于1997年获加州大学伯克利分校EECS硕士学位,2000年获数学硕士学位与EECS博士学位。目前是加州大学伯克利分校电子工程与计算机科学系教授,同时也是IEEE Fellow,ACM Fellow,SIAM Fellow。
Yann LeCun最著名的工作是在光学字符识别和计算机视觉上使用卷积神经网络(CNN),也被称为卷积网络之父;2019年他同Bengio以及Hinton共同获得计算机学界最高奖项图灵奖。
从最简单的无监督学习开始
在过去的几年里,无监督表征学习取得了巨大的进展,并且有望在数据驱动的机器学习中提供强大的可扩展性。
不过什么是学习到的表征,以及它究竟是如何以无监督的方式形成的,这些问题仍然不清楚;此外,是否存在一套支撑所有这些无监督表征的共同原则仍不清楚。
许多研究者已经意识到提高模型理解力的重要性,并采取了一些开创性的措施,试图简化SOTA方法,建立与经典方法之间的联系,统一不同的方法,使表征可视化,并从理论角度分析这些方法,并希望能够开发出一种不同的计算理论:使我们能够基于第一原理从数据中建立简单的、完全可以解释的「白盒」模型,该理论也可以为理解人脑中无监督学习的原则提供指导。
在这项工作中,研究人员又朝着这个目标迈出了一小步,试图建立一个最简单的 「白盒」无监督学习模型,并且不需要深度网络、projection heads、数据增强或其他各种工程设计。
文中通过利用两个经典的无监督学习原则,即稀疏性(sparsity)和频谱嵌入(spectral embedding),建立了一个两层模型,在几个标准数据集上取得了非显著的基准结果。
实验结果表明,基于稀疏流形变换(sparse manifold transform)的两层模型,与latent-embedding自监督方法具有相同的objective,并且在没有任何数据增强的情况下,在MNIST上取得了99.3%的KNN最高1级准确率,在CIFAR-10上取得了81.1%的KNN最高1级准确率,在CIFAR-100上取得了53.2%的准确率。
通过简单的灰度增强,进一步在CIFAR-10上实现了83.2%的KNN top-1精度,在CIFAR-100上实现了57%的KNN top-1精度。
这些结果为缩小「白盒」模型和SOTA自监督(SSL)模型之间的差距迈出了重要一步,虽然差距仍然很明显,但研究人员认为进一步缩小差距有可能对无监督表征的学习获得更深入的理解,这也是通往该理论实用化的一条有前景的研究路线。
三个基本问题
什么是无监督(自监督)的re-presentation
从本质上讲,原始信号的任何非同一性转换(non-identity transformation)都可以被称为表征(re-presentation),不过学术界更感兴趣的是那些有用的转换。
无监督re-presentation学习的一个宏观目标是找到一个函数,将原始数据转换到一个新的空间,使「相似」的东西被放在更接近的地方;同时,新的空间不应该是一个collapsed且trivial的,也就是说,必须保留数据的几何或随机结构。
如果这一目标得以实现,那么「不相似」的内容自然会在表示空间中被放置得很远。
相似性(similarity)从何而来?
相似性主要来自三个经典的想法:1)时序共现,2)空间共现;和3)原始信号空间中的局部相邻(local neighborhoods)。
当基础结构为几何结构时,这些想法在相当程度上是重叠的;但当结构为随机结构时,它们在概念上也会有所不同,下图展现了流形结构(manifold structure)和随机共现结构(stochastic co-occurrence structure.)之间的区别。
利用局部性,相关工作提出了两种无监督的学习方法:流形学习和共现统计建模,这些想法很多都达到了谱系分解的表述或密切相关的矩阵分解表述。
流形学习的理念是,只有原始信号空间中的局部邻域才是可信的,通过综合考虑所有的局部邻域,就会出现全局几何,即「全局思考,局部适配」(think globally, fit locally)。
相比之下,共现统计建模遵循一种概率理念,因为有些结构不能用连续流形来建模,所以它也是对流形理念的补充。
一个最明显的例子来自于自然语言,其中的原始数据基本不会来自于平滑的几何,比如在单词嵌入中,「西雅图」和「达拉斯」的嵌入可能很相似,尽管它们并没有频繁共现,其根本原因是它们有类似的上下文模式。
機率和流形的觀點對於理解「相似性」是互相補充的 ,當有了相似性的定義後,就可以構造一個轉換,使得相似的概念離得更近。
本文如何建立表徵轉換?基本原則:稀疏性和低秩(low rank)
大體上來說,可以用稀疏性來處理資料空間中的局部性和分解,以建立support;然後用低頻函數建立表徵變換,將相似的值分配給support上的相似點。
整個過程也可以稱為稀疏流形轉換(sparse manifold transform)。
以上是稀疏模型最新進展!馬毅+LeCun強強聯手:「白盒」非監督式學習的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

想像一下,一個人工智慧模型,不僅擁有超越傳統運算的能力,還能以更低的成本實現更有效率的效能。這不是科幻,DeepSeek-V2[1],全球最強開源MoE模型來了。 DeepSeek-V2是一個強大的專家混合(MoE)語言模型,具有訓練經濟、推理高效的特點。它由236B個參數組成,其中21B個參數用於啟動每個標記。與DeepSeek67B相比,DeepSeek-V2效能更強,同時節省了42.5%的訓練成本,減少了93.3%的KV緩存,最大生成吞吐量提高到5.76倍。 DeepSeek是一家探索通用人工智

谷歌力推的JAX在最近的基準測試中表現已經超過Pytorch和TensorFlow,7項指標排名第一。而且測試並不是JAX性能表現最好的TPU上完成的。雖然現在在開發者中,Pytorch依然比Tensorflow更受歡迎。但未來,也許有更多的大型模型會基於JAX平台進行訓練和運行。模型最近,Keras團隊為三個後端(TensorFlow、JAX、PyTorch)與原生PyTorch實作以及搭配TensorFlow的Keras2進行了基準測試。首先,他們為生成式和非生成式人工智慧任務選擇了一組主流

AI,的確正在改變數學。最近,一直十分關注這個議題的陶哲軒,轉發了最近一期的《美國數學學會通報》(BulletinoftheAmericanMathematicalSociety)。圍繞著「機器會改變數學嗎?」這個話題,許多數學家發表了自己的觀點,全程火花四射,內容硬核,精彩紛呈。作者陣容強大,包括菲爾茲獎得主AkshayVenkatesh、華裔數學家鄭樂雋、紐大電腦科學家ErnestDavis等多位業界知名學者。 AI的世界已經發生了天翻地覆的變化,要知道,其中許多文章是在一年前提交的,而在這一

本月初,來自MIT等機構的研究者提出了一種非常有潛力的MLP替代方法—KAN。 KAN在準確性和可解釋性方面表現優於MLP。而且它能以非常少的參數量勝過以更大參數量運行的MLP。例如,作者表示,他們用KAN以更小的網路和更高的自動化程度重現了DeepMind的結果。具體來說,DeepMind的MLP有大約300,000個參數,而KAN只有約200個參數。 KAN與MLP一樣具有強大的數學基礎,MLP基於通用逼近定理,而KAN基於Kolmogorov-Arnold表示定理。如下圖所示,KAN在邊上具

波士頓動力Atlas,正式進入電動機器人時代!昨天,液壓Atlas剛「含淚」退出歷史舞台,今天波士頓動力就宣布:電動Atlas上崗。看來,在商用人形機器人領域,波士頓動力是下定決心要跟特斯拉硬剛一把了。新影片放出後,短短十幾小時內,就已經有一百多萬觀看。舊人離去,新角色登場,這是歷史的必然。毫無疑問,今年是人形機器人的爆發年。網友銳評:機器人的進步,讓今年看起來像人類的開幕式動作、自由度遠超人類,但這真不是恐怖片?影片一開始,Atlas平靜地躺在地上,看起來應該是仰面朝天。接下來,讓人驚掉下巴

特斯拉機器人Optimus最新影片出爐,已經可以在工廠裡打工了。正常速度下,它分揀電池(特斯拉的4680電池)是這樣的:官方還放出了20倍速下的樣子——在小小的「工位」上,揀啊揀啊揀:這次放出的影片亮點之一在於Optimus在廠子裡完成這項工作,是完全自主的,全程沒有人為的干預。而且在Optimus的視角之下,它還可以把放歪了的電池重新撿起來放置,主打一個自動糾錯:對於Optimus的手,英偉達科學家JimFan給出了高度的評價:Optimus的手是全球五指機器人裡最靈巧的之一。它的手不僅有觸覺

目標偵測在自動駕駛系統當中是一個比較成熟的問題,其中行人偵測是最早得以部署演算法之一。在多數論文當中已經進行了非常全面的研究。然而,利用魚眼相機進行環視的距離感知相對來說研究較少。由於徑向畸變大,標準的邊界框表示在魚眼相機當中很難實施。為了緩解上述描述,我們探索了擴展邊界框、橢圓、通用多邊形設計為極座標/角度表示,並定義一個實例分割mIOU度量來分析這些表示。所提出的具有多邊形形狀的模型fisheyeDetNet優於其他模型,並同時在用於自動駕駛的Valeo魚眼相機資料集上實現了49.5%的mAP

寫在前面項目連結:https://nianticlabs.github.io/mickey/給定兩張圖片,可以透過建立圖片之間的對應關係來估計它們之間的相機姿態。通常,這些對應關係是二維到二維的,而我們估計的姿態在尺度上是不確定的。一些應用,例如隨時隨地實現即時增強現實,需要尺度度量的姿態估計,因此它們依賴外部的深度估計器來恢復尺度。本文提出了MicKey,這是一個關鍵點匹配流程,能夠夠預測三維相機空間中的度量對應關係。透過學習跨影像的三維座標匹配,我們能夠在沒有深度測試的情況下推斷度量相對
