AI大模型背後,竟是驚人的碳排放
自從ChatGPT這樣的大型語言模型在全球引起轟動以來,很少有人注意到,訓練和運行大型語言模型正在產生驚人的碳排放量。
雖然OpenAI和Google都沒有說過他們各自產品的計算成本是多少,但根據第三方研究人員分析,ChatGPT部分訓練消耗了1287兆瓦時,並導致了超過550噸的二氧化碳排放量,相當於一個人在紐約和舊金山之間往返550次。
事實上,這只是訓練時的排放量,當AI大模型運行時還會排出更多的二氧化碳。
加拿大資料中心公司QScale聯合創辦人Martin Bouchard認為,微軟和Google為了滿足搜尋引擎使用者日益增長的需求,在搜尋中加入ChatGPT這類生成式AI,會導致每次搜尋至少增加4到5倍的計算量。
如果還要經常重新訓練模型,並且加入更多的參數,計算量的規模就完全不同了。
根據國際能源總署(International Energy Agency)的數據,資料中心的溫室氣體排放量已佔到全球溫室氣體排放量的約1%。
隨著AI大模型和對雲端運算需求的成長,這個數字預計還會上升。
AI大模型,正成為碳排放的一個重要來源。
1.降低AI大模型的碳排放
AI模型的訓練和運作過程需要消耗大量能源,但關鍵問題是,如何知道及計算單一機器學習實驗正在產生多少溫室氣體排放,以及可以減少多少?
目前資料科學家仍無法簡單可靠地取得該領域的測量結果,這也妨礙著進一步發展可行的因應策略。
針對這個問題,Google發表了一項研究,詳細介紹了最先進的語言模型的能源成本,包括早期和更大版本的LaMDA。
研究結果表明,將高效的模型、處理器和資料中心與清潔能源結合,可以將機器學習系統的碳足跡減少1000倍。
團隊提出了四種基本方法,可大幅減少機器學習工作負載的碳(和能源)足跡,這些方法目前在Google中使用,任何使用Google Cloud服務的人都可以使用。
Google能源和碳足跡減少最佳實踐(4Ms)如下:
- 模型:研究人員表示,選擇高效的ML模型架構至關重要,因為它有可能提高ML質量,同時將運算時間縮短一半。
- 機器:與通用處理器相比,使用專門用於ML訓練的處理器和系統可以將效能和能源效率提高2倍至5倍。
- 機械化:大多數情況下,本地資料中心更老、更小。因此,新的節能冷卻和配電系統的費用無法攤提。
基於雲端的資料中心是全新的、客製化設計的倉庫,具有可容納50000台伺服器的能源效率特性。它們提供異常高效率的電源利用率 (PUE)。
因此,在雲端而不是在本地進行運算,可以節省1.4-2倍的能源並減少污染。
- 優化:雲端可讓客戶選擇具有最清潔能源的區域,從而將總碳足跡減少5到10倍。基於4Ms改進的模型、特定於機器學習的硬體和高效的資料中心,大大抵消了這種負載增加。
Google的數據表明,機器學習訓練和推理在過去三年中僅佔谷歌整體能源使用量的10%至15%,其中每年有35%用於推理,25%用於訓練。
為了找到改進的機器學習模型,Google採用了神經架構搜尋 (NAS)。
每個問題域/搜尋空間組合通常只執行一次NAS,然後可以將生成的模型重複用於數百個應用程序,NAS的一次性成本通常被持續使用的減排量所抵消。
研究人員進行了一項研究來訓練Transformer模型。
為此,他們在典型的資料中心中使用了Nvidia P100 GPU,其能源組合與全球平均水平相似,而使用TPUv4等新一代ML硬件,性能比P100提升了14倍。
同時,高效率的雲端資料中心比一般資料中心節省1.4倍的能源,進而使總能耗降低83倍。
此外,低碳能源驅動的資料中心可以將碳排放量再減少9倍,在四年內總共減少747倍。
Google團隊認為,在資訊科技領域,製造各種類型和規模的計算設備的生命週期成本,比機器學習的營運成本要高得多。
排放估算的製造成本包括製造所有相關組件(從晶片到資料中心建築)所排放的嵌入碳。
當然,除了使用4Ms方法,服務提供者和使用者還可以採取簡單的措施來提高他們的碳足跡績效,例如:
客戶應透過讓資料中心提供者報告資料中心效率和每個位置的能源供應清潔度,來分析和減少他們的能源使用和碳足跡。
工程師應該在最環保的資料中心中最快的處理器上訓練模型,這些資料中心越來越多地在雲端上。
機器學習的研究人員應該專注於設計更有效的模型,如:利用稀疏性或包含檢索來減少模型。
此外,他們應該報告他們的能源消耗和碳影響。這不僅會鼓勵超越模型品質的競爭,而且還可以確保對他們的工作進行正確的核算。
2.AI輔助降低碳排放
儘管AI大模型是碳排放大戶,但以AI為代表的前沿科技也正在為降碳減排做出貢獻。
百度與顧問機構IDC(International Data Corporation)共同進行的研究顯示:與AI相關的技術減碳貢獻佔比會逐年提升,到2060年將至少達到70% ,減碳總量預計超過350億噸。
以交通產業為例,2020年中國交通產業的碳排放估計為10.4億噸,佔全國整體排放的9%。
而在驅動交通產業降碳減量過程中,使用以智慧信控為主的緩堵型智慧交通技術,可以有效提升城市主要道路交叉口的通行效率,千萬級人口城市因此每年可至少減碳4.16萬噸──這相當於1.4萬輛私家車行駛一年的碳排量。
從目前的實踐來看,理解和實現減排的關鍵是對減排的效果進行預測和監控,而AI在節能減排中具有預測排放、監測排放、減少排放三個關鍵應用。
根據《碳中和產業發展白皮書》顯示,在預測排放方面,AI 能夠根據當前減排工作和需求,預測未來的碳排放量,同時為碳排放定下排放量指引。
在監控排放方面,AI 能即時追蹤碳足跡數據,從採購、生產、銷售、維運、物流等全環節收集數據,提升監控準確性。
在減少排放方面,AI 收集各環節資料後,能夠以全局視角對各環節工作流程做出最佳化調整。
事實上,在AI輔助碳減量方面,目前國內多個領域已有應用。
在新能源領域,突出問題在於其具有波動性、隨機性、間歇性特徵。
透過AI技術結合模擬計算,對風光電的不穩定情況做場景預測,如:結合風速、風向、光照強度等自然氣象特徵對未來的發電量進行合理的預測,向電網輸出更精準的發電計劃,將新能源的不確定性、不穩定屏蔽在技術層之下。
再例如,水務集團的管轄範圍包括原水、制水、供水、排水、污水、節水等。
以居民供水為例,水壓過大,所需能耗大,管網漏損率高,可能會引起爆管事件;而水壓過小,可能會造成居民用水不便。
為了解決這個問題,水務集團在地下部署硬體感測器監測水壓、建設水務大腦,在保證安全、穩定供水的前提下,透過AI技術可以實現智慧化調壓控制、能耗最佳化。
不僅如此,AI降碳技術也應用在電廠、園區、資料中心等能源消耗較高的業務場景中,對其生產用電需求進行精確預測與控制,進行耗電設備、碳足跡的最佳化。
3.結語
AI技術的進步為人類帶來了許多便利,但也必須在發展中關注環境問題。
未來AI如何實現永續發展,以及AI如何更好地支撐雙碳領域的變革,仍是亟需各產業共同解決的問題。
以上是AI大模型背後,竟是驚人的碳排放的詳細內容。更多資訊請關注PHP中文網其他相關文章!

熱AI工具

Undresser.AI Undress
人工智慧驅動的應用程序,用於創建逼真的裸體照片

AI Clothes Remover
用於從照片中去除衣服的線上人工智慧工具。

Undress AI Tool
免費脫衣圖片

Clothoff.io
AI脫衣器

Video Face Swap
使用我們完全免費的人工智慧換臉工具,輕鬆在任何影片中換臉!

熱門文章

熱工具

記事本++7.3.1
好用且免費的程式碼編輯器

SublimeText3漢化版
中文版,非常好用

禪工作室 13.0.1
強大的PHP整合開發環境

Dreamweaver CS6
視覺化網頁開發工具

SublimeText3 Mac版
神級程式碼編輯軟體(SublimeText3)

DALL-E 3 於 2023 年 9 月正式推出,是比其前身大幅改進的車型。它被認為是迄今為止最好的人工智慧圖像生成器之一,能夠創建具有複雜細節的圖像。然而,在推出時,它不包括

本站6月27日訊息,剪映是由位元組跳動旗下臉萌科技開發的一款影片剪輯軟體,依託於抖音平台且基本面向該平台用戶製作短影片內容,並相容於iOS、安卓、Windows 、MacOS等作業系統。剪映官方宣布會員體系升級,推出全新SVIP,包含多種AI黑科技,例如智慧翻譯、智慧劃重點、智慧包裝、數位人合成等。價格方面,剪映SVIP月費79元,年費599元(本站註:折合每月49.9元),連續包月則為59元每月,連續包年為499元每年(折合每月41.6元) 。此外,剪映官方也表示,為提升用戶體驗,向已訂閱了原版VIP

大型語言模型(LLM)是在龐大的文字資料庫上訓練的,在那裡它們獲得了大量的實際知識。這些知識嵌入到它們的參數中,然後可以在需要時使用。這些模型的知識在訓練結束時被「具體化」。在預訓練結束時,模型實際上停止學習。對模型進行對齊或進行指令調優,讓模型學習如何充分利用這些知識,以及如何更自然地回應使用者的問題。但是有時模型知識是不夠的,儘管模型可以透過RAG存取外部內容,但透過微調使用模型適應新的領域被認為是有益的。這種微調是使用人工標註者或其他llm創建的輸入進行的,模型會遇到額外的實際知識並將其整合

編輯|ScienceAI問答(QA)資料集在推動自然語言處理(NLP)研究中發揮著至關重要的作用。高品質QA資料集不僅可以用於微調模型,也可以有效評估大語言模型(LLM)的能力,尤其是針對科學知識的理解和推理能力。儘管目前已有許多科學QA數據集,涵蓋了醫學、化學、生物等領域,但這些數據集仍有一些不足之處。其一,資料形式較為單一,大多數為多項選擇題(multiple-choicequestions),它們易於進行評估,但限制了模型的答案選擇範圍,無法充分測試模型的科學問題解答能力。相比之下,開放式問答

編輯|KX在藥物研發領域,準確有效地預測蛋白質與配體的結合親和力對於藥物篩選和優化至關重要。然而,目前的研究並沒有考慮到分子表面訊息在蛋白質-配體相互作用中的重要作用。基於此,來自廈門大學的研究人員提出了一種新穎的多模態特徵提取(MFE)框架,該框架首次結合了蛋白質表面、3D結構和序列的信息,並使用交叉注意機制進行不同模態之間的特徵對齊。實驗結果表明,該方法在預測蛋白質-配體結合親和力方面取得了最先進的性能。此外,消融研究證明了該框架內蛋白質表面資訊和多模態特徵對齊的有效性和必要性。相關研究以「S

本站8月1日消息,SK海力士今天(8月1日)發布博文,宣布將出席8月6日至8日,在美國加州聖克拉拉舉行的全球半導體記憶體峰會FMS2024,展示諸多新一代產品。未來記憶體和儲存高峰會(FutureMemoryandStorage)簡介前身是主要面向NAND供應商的快閃記憶體高峰會(FlashMemorySummit),在人工智慧技術日益受到關注的背景下,今年重新命名為未來記憶體和儲存高峰會(FutureMemoryandStorage),以邀請DRAM和儲存供應商等更多參與者。新產品SK海力士去年在

本站7月5日消息,格芯(GlobalFoundries)於今年7月1日發布新聞稿,宣布收購泰戈爾科技(TagoreTechnology)的功率氮化鎵(GaN)技術及智慧財產權組合,希望在汽車、物聯網和人工智慧資料中心應用領域探索更高的效率和更好的效能。隨著生成式人工智慧(GenerativeAI)等技術在數位世界的不斷發展,氮化鎵(GaN)已成為永續高效電源管理(尤其是在資料中心)的關鍵解決方案。本站引述官方公告內容,在本次收購過程中,泰戈爾科技公司工程師團隊將加入格芯,進一步開發氮化鎵技術。 G

在前端開發的世界裡,VSCode以其強大的功能和豐富的插件生態,成為了無數開發者的首選工具。而近年來,隨著人工智慧技術的快速發展,VSCode上的AI代碼助理也如雨後春筍般湧現,大大提升了開發者的編碼效率。 VSCode上的AI代碼助手,如雨後春筍般湧現,大大提升了開發者的編碼效率。它利用人工智慧技術,能夠聰明地分析程式碼,提供精準的程式碼補全、自動糾錯、語法檢查等功能,大大減少了開發者在編碼過程中的錯誤和繁瑣的手工工作。有今天,就為大家推薦12款VSCode前端開發AI程式碼助手,幫助你在程式設計之路
